Skip to main content
Log in

Bergson and the holographic theory of mind

  • Published:
Phenomenology and the Cognitive Sciences Aims and scope Submit manuscript

Abstract

Bergson’s model of time (1889) is perhaps the proto-phenomenological theory. It is part of a larger model of mind (1896) which can be seen in modern light as describing the brain as supporting a modulated wave within a holographic field, specifying the external image of the world, and wherein subject and object are differentiated not in terms of space, but of time. Bergson’s very concrete model is developed and deepened with Gibson’s ecological model of perception. It is applied to the problems of consciousness, direct realism, qualia and illusions. The model implies an entirely different basis for memory and cognition, and a brief overview is given for the basis of direct memory, compositionality and systematicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beckenstein, J. (2003). Information in the holographic universe. Scientific American, 289(2), 58–66.

    Article  Google Scholar 

  • Bell, J. S. (1987). Beables for quantum field theory. In B. J. Hiley & F. D. Peat (Eds.), Quantum implications. London: Routledge and Kegan-Paul.

    Google Scholar 

  • Bergson, H. (1889). Time and free will: An essay on the immediate data of consciousness. London: George Allen and Unwin Ltd.

    Google Scholar 

  • Bergson, H. (1896/1912). Matter and memory. New York: Macmillan.

    Google Scholar 

  • Bickhard, M. H., & Richie, D. M. (1983). On the nature of representation. New York: Praeger.

    Google Scholar 

  • Bohm, D. (1980). Wholeness and the implicate order. London: Routledge and Kegan-Paul.

    Google Scholar 

  • Byrne, A., & Hilbert, D. (2003). Color realism and color science. Behavioral and Brain Sciences, 26, 3–21.

    Article  Google Scholar 

  • Cabe, P. A., & Pittenger, J. B. (2000). Human sensitivity to acoustic information from vessel filling. Journal of Experimental Psychology: Human Perception and Performance, 26, 313–324.

    Article  Google Scholar 

  • Cassirer, E. (1929/1957). The philosophy of symbolic forms, vol 3: The phenomenology of knowledge. New Haven: Yale University Press.

    Google Scholar 

  • Copeland, B. J. (2000). Narrow versus wide mechanism: Including a re-examination of Turing’s views on the mind-machine issue, XCVI. Journal of Philosophy, 1, 5–32.

    Article  Google Scholar 

  • Craig, C. M., & Bootsma, R. J. (2000). Judging time to passage. In M. A. Grealy & J. A. Thomson (Eds.), Studies in perception and action V. New Jersey: Erlbaum.

    Google Scholar 

  • De Broglie, L. (1947/1969). The concepts of contemporary physics and Bergson’s ideas on time and motion. In P. A. Y. Gunter (Ed.), Bergson and the evolution of physics. University of Tennessee Press.

  • Domini, F., Vuong, Q. C., & Caudek, C. (2002). Temporal integration in structure from motion. Journal of Experimental Psychology: Human Perception and Performance, 28(4), 816–838.

    Article  Google Scholar 

  • Engelkamp, J. (1998). Memory for actions. East Sussex: Psychology Press.

    Google Scholar 

  • Feynman, R. P., & Hibbs, A. R. (1965). Quantum mechanics and path integrals. New York: MacGraw-Hill.

    Google Scholar 

  • Fodor, J., & Pylyshyn, Z. (1995). Connectionism and cognitive architecture. In C. MacDonald & G. MacDonald (Eds.), Connectionism: Debates on psychological explanation. Oxford: Basil Blackwell.

    Google Scholar 

  • Galton, F. (1883). Inquiries into Human Faculty and its Development. London: Macmillan.

    Google Scholar 

  • Gelernter, D. (1994). The muse in the machine: Computerizing the poetry of human thought. New York: Free Press.

    Google Scholar 

  • Gibson, J. J. (1950). The perception of the visual world. Boston: Houghton-Mifflin.

    Google Scholar 

  • Gibson, J. J. (1966). The senses considered as visual systems. Boston: Houghton-Mifflin.

    Google Scholar 

  • Glassman, R. B. (1999). Hypothesized neural dynamics of working memory: Several chunks might be marked simultaneously by harmonic frequencies within an octave bank of brain waves. Brain Research Bulletin, 30(2), 77–93.

    Article  Google Scholar 

  • Gray, R., & Regan, D. (1999). Estimating time to collision with a rotating nonspherical object. In M. A. Grealy & J. A. Thomson (Eds.), Studies in perception and action V. New Jersey: Erlbaum.

    Google Scholar 

  • Heidegger, M. (1927). Being and time. New York: Harper and Row.

    Google Scholar 

  • Hoaglund, H. (1966). Some bio-chemical considerations of time. In J. T. Fraser (Ed.), The voices of time. New York: Braziller.

    Google Scholar 

  • James, W. (1890). Principles of psychology, vol. II. New York: Holt and Co.

    Google Scholar 

  • Kim, N., Turvey, M., & Carrelo, C. (1993). Optimal information about the severity of upcoming contacts. Journal of Experimental Psychology: Human Perception and Performance, 19(1), 179–193.

    Article  Google Scholar 

  • Klein, D. B. (1970). A history of scientific psychology. New York: Basic Books.

    Google Scholar 

  • Kock, W. E. (1969). Lasers and holography. New York: Doubleday-Anchor.

    Google Scholar 

  • Kugler, P., & Turvey, M. (1987). Information, natural law, and the self-assembly of rhythmic movement. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Lombardo, T. J. (1987). The reciprocity of perceiver and environment: The evolution of James J. Gibson’s ecological psychology. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Lynds, P. (2003). Time and classical and quantum mechanics: Indeterminacy versus discontinuity. Foundations of Physics Letters, 16(4), 343–355.

    Article  Google Scholar 

  • Mach, E. (1902). Science of mechanics: A critical and historical account of its development. Chicago: Open Court.

    Google Scholar 

  • Molenaar, P., & Raijakers, M. (2000). A causal interpretation of Piaget’s theory of cognitive development: Reflections on the relationship between epigenesis and non-linear dynamics. New Ideas in Psychology, 18, 41–55.

    Article  Google Scholar 

  • Mussati, C. L. (1924). Sui fenomeni stereocinetici. Archivo Italiano di Psycologia, 3, 105–120.

    Google Scholar 

  • Nottale, L. (1996). Scale relativity and fractal space–time: Applications to quantum physics, cosmology and chaotic systems. Chaos, Solitons and Fractals, 7, 877–938.

    Article  Google Scholar 

  • O’Regan, J. K. (1992). Solving the real mysteries of perception: The world as an outside memory. Canadian Journal of Psychology, 46, 461–488.

    Google Scholar 

  • O’Regan, J. K., & Noë, A. (2001). A sensori-motor account of vision and visual consciousness. Behavioral and Brain Sciences, 24, 939–973.

    Article  Google Scholar 

  • Piaget, J. (1946). The child’s conception of movement and speed. New York: Ballentine.

    Google Scholar 

  • Pittenger, J. B., & Shaw, R. E. (1975). Aging faces as viscal elastic events: Implications for a theory of nonrigid shape perception. Journal of Experimental Psychology: Human Perception and Performance, 1, 374–382.

    Article  Google Scholar 

  • Pribram, K. (1971). Languages of the brain. New Jersey: Prentice-Hall.

    Google Scholar 

  • Prinz, J., & Barsalou, L. (2000). Steering a course for embodied representation. In E. Dietrich & A. B. Markman (Eds.), Cognitive dynamics: Conceptual and representational change in humans and machines. New Jersey: Erlbaum.

    Google Scholar 

  • Robbins, S. E. (1976). Time and memory: The basis for a semantic-directed processor and its meaning for education. Doctoral dissertation, University of Minnesota.

  • Robbins, S. E. (2000). Bergson, perception and Gibson. Journal of Consciousness Studies, 7(5), 23–45.

    Google Scholar 

  • Robbins, S. E. (2001). Bergson’s virtual action. In A. Riegler, M. Peschl, K. Edlinger & G. Fleck (Eds.), Virtual reality: Philosophical issues, cognitive foundations, technological implications. Frankfurt: Peter Lang Verlag.

    Google Scholar 

  • Robbins, S. E. (2002). Semantics, experience and time. Cognitive Systems Research, 3, 301–335.

    Article  Google Scholar 

  • Robbins, S. E. (2004a). On time, memory and dynamic form. Consciousness and Cognition, 13, 762–788.

    Article  Google Scholar 

  • Robbins, S. E. (2004b). Virtual action: O’Regan and Noë meet Bergson. Behavioral and Brain Sciences, 27(6), 907–908.

    Article  Google Scholar 

  • Robbins, S. E. (2006). On the possibility of direct memory. In V. W. Fallio (Ed.), New developments in consciousness research. New York: Nova Science.

    Google Scholar 

  • Savelsbergh, G. J. P., Whiting, H. T., & Bootsma, R. J. (1991). Grasping tau. Journal of Experimental Psychology: Human Perception and Performance, 17, 315–322.

    Article  Google Scholar 

  • Shaw, R. E., & McIntyre, M. (1974). The algoristic foundations of cognitive psychology. In D. Palermo & W. Weimer (Eds.), Cognition and the symbolic processes. New Jersey: Lawrence Erlbaum Associates.

    Google Scholar 

  • Shaw, R. E., McIntyre, M., & Mace, W. (1974). The role of symmetry in event perception. In: R. B. MacLeod & H. L. Pick (Eds.). Perception: Essays in honor of James J. Gibson (pp. 276–310).

  • Sherry, D., & Schacter, D. (1987). The evolution of multiple memory systems. Pscyhological Review, 94(4), 439–454.

    Article  Google Scholar 

  • Smythies, J. (2002). Comment on Crook’s “Intertheoretic identification and mind-brain reductionism”. Journal of Mind and Behavior, 23, 245–248.

    Google Scholar 

  • Sperry, R. W. (1952). Neurology and the mind-brain problem. American Scientist, 40, 291–312.

    Google Scholar 

  • Taylor, J. G. (2002). From matter to mind. Journal of Consciousness Studies, 9, 3–22.

    Google Scholar 

  • Tulving, E. (1972). Episodic and semantic memory. In E. Tulving & W. Donaldson (Eds.), Organization of memory. Academic.

  • Turvey, M. (1977a). Preliminaries to a theory of action with references to vision. In R. E. Shaw & J. Bransford (Eds.), Perceiving, acting and knowing. New Jersey: Erlbaum.

    Google Scholar 

  • Turvey, M., & Carello, C. (1995). Dynamic touch. In W. Epstein & S. Rogers (Eds.), Perception of space and motion. San Diego: Academic.

    Google Scholar 

  • Weiss, Y., & Adelson, E. (1998). Slow and smooth: A Bayesian theory for the combination of local motion signals in human vision. MIT A. I. Memo No. 1624.

  • Weiss, Y., Simoncelli, E., & Adelson, E. (2002). Motion illusions as optimal percepts. Nature Neuroscience, 5, 598–604.

    Article  Google Scholar 

  • Winograd, T., & Flores, F. (1987). Understanding computers and cognition. Norwood, NJ: Addison-Wesley.

    Google Scholar 

  • Yarrow, K., Haggard, P., Heal, R., Brown, P., & Rothwell, J. C. (2001). Illusory perceptions of space and time preserve cross-saccadic perceptual continuity. Nature, 414, 302–304.

    Article  Google Scholar 

  • Yasue, K., Jibu, M., & Pribram, K. H. (1991). A theory of non-local cortical processing in the brain. In K. H. Pribram (Ed.), Brain and perception. New Jersey: Erlbaum.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen E Robbins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robbins, S.E. Bergson and the holographic theory of mind. Phenom Cogn Sci 5, 365–394 (2006). https://doi.org/10.1007/s11097-006-9023-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11097-006-9023-1

Key words

Navigation