Skip to main content
Log in

Free Drug Theory – No Longer Just a Hypothesis?

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The Free Drug Hypothesis is a well-established concept within the scientific lexicon pervading many areas of Drug Discovery and Development, and yet it is poorly defined by virtue of many variations appearing in the literature. Clearly, unbound drug is in dynamic equilibrium with respect to absorption, distribution, metabolism, elimination, and indeed, interaction with the desired pharmacological target. Binding interactions be they specific (e.g. high affinity) or nonspecific (e.g. lower affinity/higher capacity) are governed by the same fundamental physicochemical tenets including Hill-Langmuir Isotherms, the Law of Mass Action and Drug Receptor Theory. With this in mind, it is time to recognise a more coherent version and consider it the Free Drug Theory and a hypothesis no longer. Today, we have the experimental and modelling capabilities, pharmacological knowledge, and an improved understanding of unbound drug distribution (e.g. Kpuu) to raise the bar on our understanding and analysis of experimental data. The burden of proof should be to rule out mechanistic possibilities and/or experimental error before jumping to the conclusion that any observations contradict these fundamentals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gillette JR. Overview of drug-protein binding. Ann N Y Acad Sci. 1973;226(1):6–17. https://doi.org/10.1111/j.1749-6632.1973.tb20464.x.

    Article  CAS  PubMed  Google Scholar 

  2. Machard B, Misslin P, Lemaire M. Influence of plasma protein binding on the brain uptake of an antifungal agent, terbinafine, in rats. J Pharm Pharmacol. 1989;41(10):700–4. https://doi.org/10.1111/j.2042-7158.1989.tb06344.x.

    Article  CAS  PubMed  Google Scholar 

  3. Pearson RM. Pharmacokinetics and response to Diazoxide in renal failure. Clin Pharmacokinet. 1977;2:198–204. https://doi.org/10.2165/00003088-197702030-00004.

    Article  CAS  PubMed  Google Scholar 

  4. du Souich P, Verges J, Erill S. Plasma protein binding and pharmacological response. Clin Pharmacokinet. 1993;24(6):435–40. https://doi.org/10.2165/00003088-199324060-00001.

    Article  PubMed  Google Scholar 

  5. Dubey RK, McAllister CB, Inoue M, Wilkinson GR. Plasma binding and transport of diazepam across the blood-brain barrier. No evidence for in vivo enhanced dissociation. J Clin Invest. 1989;84(4):1155–9. https://doi.org/10.1172/JCI114279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mendel CM. The free hormone hypothesis: a physiologically based mathematical model. Endocr Rev. 1989;10(3):232–74. https://doi.org/10.1210/edrv-10-3-232.

    Article  CAS  PubMed  Google Scholar 

  7. Pardridge WM, Landaw EM. Tracer kinetic model of blood-brain barrier transport of plasma protein-bound ligands. Empiric testing of the free hormone hypothesis. J Clin Invest. 1984;74(3):745–52. https://doi.org/10.1172/JCI111490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Terasaki T, Pardridge WM, Denson DD. Differential effect of plasma protein binding of bupivacaine on its in vivo transfer into the brain and salivary gland of rats. J Pharmacol Exp Ther. 1986;239(3):724–9.

    CAS  PubMed  Google Scholar 

  9. Urien S, Pinquier JL, Paquette B, Chaumet-Riffaud P, Kiechel JR, Tillement JP. Effect of the binding of isradipine and darodipine to different plasma proteins on their transfer through the rat blood-brain barrier. Drug binding to lipoproteins does not limit the transfer of drug. J Pharmacol Exp Ther. 1987;242(1):349–53.

    CAS  PubMed  Google Scholar 

  10. Tillement JP, Urien S, Chaumet-Riffaud P, Riant P, Bree F, Morin D, Albengres E, Barre J. Blood binding and tissue uptake of drugs. Recent advances and perspectives. Fundam. Clin. Pharmacol. 1988;2:223–38. https://doi.org/10.1111/j.1472-8206.1988.tb00663.x.

    Article  CAS  Google Scholar 

  11. Hammarlund-Udenaes M. MiniReviewActive-site concentrations of chemicals – are they a better predictor of effect than plasma /organ / tissue concentrations? Nordic pharmacological society. Basic Clin Pharmacol Toxicol. 2009;106:215–20. https://doi.org/10.1111/j.1742-7843.2009.00517.x.

    Article  CAS  PubMed  Google Scholar 

  12. Thanga Mariappan T, Mandlekar S, Marathe P. Insight into tissue unbound concentration: utility in drug discovery and development. Curr Drug Metab. 2013;14(3):324–40. https://doi.org/10.2174/1389200211314030008.

    Article  PubMed  Google Scholar 

  13. Chen C, Zhou H, Guan C, Zhang H, Li Y, Jiang X, Dong Z, Tao Y, du J, Wang S, Zhang T, du N, Guo J, Wu Y, Song Z, Luan H, Wang Y, du H, Zhang S, et al. Applicability of free drug hypothesis to drugs with good membrane permeability that are not efflux transporter substrates: a microdialysis study in rats. Pharmacol Res Perspect. 2020;8(2):e00575. https://doi.org/10.1002/prp2.575.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hammarlund-Udenaes M, Fridén M, Syvänen S, Gupta A. On the rate and extent of drug delivery to the brain. Pharm Res. 2008;25:1737–50. https://doi.org/10.1007/s11095-007-9502-2.

    Article  CAS  PubMed  Google Scholar 

  15. Riccardi K, Lin J, Li Z, Niosi M, Ryu S, Hua W, Atkinson K, Kosa RE, Litchfield J, di L. Novel method to predict in vivo liver-to-plasma Kpuu for OATP. Substrates using suspension hepatocytes. Drug Metab Dispos. 2017;45(5):576–80. https://doi.org/10.1124/dmd.116.074575.

    Article  CAS  PubMed  Google Scholar 

  16. Mateus A, Matsson P, Artursson P. Rapid measurement of intracellular unbound drug concentrations. Mol Pharm. 2013;10(6):2467–78. https://doi.org/10.1021/mp4000822.

    Article  CAS  PubMed  Google Scholar 

  17. de Lange ECM. The mastermind approach to CNS drug therapy: translational prediction of human brain distribution, target site kinetics, and therapeutic effects. Fluids Barriers CNS. 2013;10. https://doi.org/10.1186/2045-8118-10-12.

  18. Morgan P, Van der Graaf PH, Arrowsmith J, Feltner DE, Drummond KS, Wegner CD, et al. Can the flow of medicines be improved? Fundamental pharmacokinetic and pharmacological principles toward improving phase II survival. Drug Discov Today. 2012;17(9–10):419–24. https://doi.org/10.1016/j.drudis.2011.12.020.

    Article  CAS  PubMed  Google Scholar 

  19. Finlay DB, Duffull SB, Glass M. 100 years of modelling ligand–receptor binding and response: a focus on GPCRs. Br J Pharmacol. 2020;177(7):1472–84. https://doi.org/10.1111/bph.14988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Langley JN. On the physiology of the salivary secretion. Part II. On the mutual antagonism of Atropin and Pilocarpin, having especial reference to their relations in the sub-maxillary gland of the cat. J Physiol. 1878;1(4–5):339–69. https://doi.org/10.1113/jphysiol.1878.sp000028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Maehle AH, Prüll CR, Halliwell R. The emergence of the drug receptor theory. Nat Rev Drug Discov. 2002;1:637–41. https://doi.org/10.1038/nrd875.

    Article  CAS  PubMed  Google Scholar 

  22. Hill AV. The mode of action of nicotine and curari, determined by the form of the contraction curve and the method of temperature coefficients. J Physiol. 1909;39(5):361–73. https://doi.org/10.1113/jphysiol.1909.sp001344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc. 1918;40(9):1361–403. https://doi.org/10.1021/ja02242a004.

    Article  CAS  Google Scholar 

  24. Pouliquen IJ, Kornmann O, Barton SV, Price JA, Ortega HG. Characterization of the relationship between dose and blood eosinophil response following subcutaneous administration of mepolizumab. Int J Clin Pharmacol Ther. 2015;53(12):1015–27. https://doi.org/10.5414/CP202446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bowes J, Brown AJ, Hamon J, Jarolimek W, Sridhar A, Waldron G, Whitebread S. Reducing safety-related drug attrition: the use of in vitro pharmacological profiling. Nat Rev Drug Discov. 2012;11:909–22. https://doi.org/10.1038/nrd3845.

    Article  CAS  PubMed  Google Scholar 

  26. Volpe DA. Transporter assays as useful in vitro tools in drug discovery and development. Expert Opin Drug Discov. 2016;11(1):91–103. https://doi.org/10.1517/17460441.2016.1101064.

    Article  CAS  PubMed  Google Scholar 

  27. Li AP. Screening for human ADME/Tox drug properties in drug discovery. Drug Discov Today. 2001;6(7):357–66. https://doi.org/10.1016/s1359-6446(01)01712-3.

    Article  CAS  PubMed  Google Scholar 

  28. Summerfield SG, Stevens AJ, Cutler L, del Carmen OM, Hammond B, Tang SP, et al. Improving the in vitro prediction of in vivo central nervous system penetration: integrating permeability, P-glycoprotein efflux, and free fractions in blood and brain. J Pharmacol Exp Ther. 2006;316:1282–90. https://doi.org/10.1124/jpet.105.092916.

    Article  CAS  PubMed  Google Scholar 

  29. Fridén M, Winiwarter S, Jerndal G, Bengtsson O, Wan H, Bredberg U, Hammarlund-Udenaes M, Antonsson M. Structure–brain exposure relationship in rat and human using a novel data set of unbound drug concentra-tions in brain interstitial and cerebrospinal fluids. J Med Chem. 2009;52(20):6233–43. https://doi.org/10.1021/jm901036q.

    Article  CAS  PubMed  Google Scholar 

  30. Jeffrey P, Summerfield SG. Challenges for blood-brain barrier (BBB) screening. Xenobiotica. 2007;37(10–11):1135–51. https://doi.org/10.1080/00498250701570285.

    Article  CAS  PubMed  Google Scholar 

  31. Summerfield SG, Zhang Y, Liu H. Examining the uptake of central nervous system drugs and candidates across the blood-brain barrier. J Pharmacol Exp Ther. 2016;358(2):294–305. https://doi.org/10.1124/jpet.116.232447.

    Article  CAS  PubMed  Google Scholar 

  32. Watson J, Wright S, Lucas A, Clarke KL, Viggers J, Cheetham S, Jeffrey P, Porter R, Read KD. Receptor occupancy and brain free fraction. Drug Metab Dispos. 2009;37(4):753–60. https://doi.org/10.1124/dmd.108.022814.

    Article  CAS  PubMed  Google Scholar 

  33. Liu X, Vilenski O, Kwan J, Apparsundaram S, Weikert S. Unbound brain concentration determines receptor occupancy: a correlation of drug concentration and brain serotonin and dopamine reuptake transporter occupancy for eighteen compounds in rats. Drug Metab Dispos. 2009;37(7):1548–56. https://doi.org/10.1124/dmd.109.026674.

    Article  CAS  PubMed  Google Scholar 

  34. Kalvass JC, Olson ER, Cassidy MP, Selley DE, Pollack QM. Pharmacokinetics and pharmacodynamics of seven opioids in P-glycoprotein-competent mice: assessment of unbound brain EC50,u and correlation of in vitro, preclinical, and clinical data. J Pharmacol Exp Ther. 2007;323(1):346–55. https://doi.org/10.1124/jpet.107.119560.

    Article  CAS  PubMed  Google Scholar 

  35. Large CH, Kalinichev M, Lucas A, Carignani C, Bradford A, Garbati N, Sartori I, Austin NE, Ruffo A, Jones DNC, Alvaro G, Read KD. The relationship between sodium channel inhibition and anticonvulsant activity in a model of generalised seizure in the rat. Epilepsy Res. 2009;85:96–106. https://doi.org/10.1016/j.eplepsyres.2009.02.018.

    Article  CAS  PubMed  Google Scholar 

  36. Ghobrial O, Derendorf H, Hillman JD. Human serum binding and its effect on the pharmacodynamics of the lantibiotic MU1140. Eur J Pharm Sci. 2010;41(5):658–64. https://doi.org/10.1016/j.ejps.2010.09.005.

    Article  CAS  PubMed  Google Scholar 

  37. Lee BL, Sachdeva M, Chambers HF. Effect of protein binding of Daptomycin and antibacterial activity. Antimicrob Agents Chemother. 1991;35(12):2505–8. https://doi.org/10.1128/AAC.35.12.2505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Benjamin B, Sahu M, Bhatnagar U, Abhyankar D, Srinivas NR. The observed correlation between in vivo clinical pharmacokinetic parameters and in vitro potency of VEGFR-2 inhibitors. Arzneimittel-Forschung/Drug Research. 2012;62(4):194–201. https://doi.org/10.1055/s-0031-1299772.

    Article  CAS  PubMed  Google Scholar 

  39. Friberg LE, Sandström M, Karlsson MO. Scaling the time-course of myelosuppression from rats to patients with a semi-physiological model. Investig New Drugs. 2010;28(6):744–53. https://doi.org/10.1007/s10637-009-9308-7.

    Article  CAS  Google Scholar 

  40. Parkinson J, Visser SAG, Jarvis P, Pollard C, Valentin JP, Yates, et al. Translational pharmacokinetic-pharmacodynamic modeling of QTc effects in dog and human. J Pharmacol Toxicol Methods. 2013;68(3):357–66. https://doi.org/10.1016/j.vascn.2013.03.007.

    Article  CAS  PubMed  Google Scholar 

  41. Van der Graaf PH, Van Schaick EA, Mathôt RAA, Ijzerman AP, Danhof M. Mechanism-based pharmacokinetic-Pharmacodynamic modeling of the effects of N6 -Cyclopentyladenosine analogs on heart rate in rat: estimation of in vivo operational affinity and efficacy at adenosine A1 receptors. J Pharmacol Exp Ther. 1997;283(2):809–16.

    Google Scholar 

  42. Van der Graaf PH, Van Schaick EA, Visser SA, De Greef HJ, Ijzerman AP, Danhof M. Mechanism-based pharmacokinetic-Pharmacodynamic modeling of Antilipolytic effects of adenosine A1 receptor agonists in rats: prediction of tissue-dependent efficacy in vivo. J Pharmacol Exp Ther. 1999;290(2):702–9.

    PubMed  Google Scholar 

  43. Gerskowitch VP, Hodge J, Hull RAD, Shankley NP, Kalindjian SB, McEwen J, Black JW. Unexpected relationship between plasma protein binding and the pharmacodynamics of 2-NAP, a CCK1-receptor antagonist. Br J Clin Pharmacol. 2007;63(5):618–22. https://doi.org/10.1111/j.1365-2125.2006.02789.x.

    Article  CAS  PubMed  Google Scholar 

  44. Housset C, Chrétien Y, Debray D, Chignard N. Functions of the Gallbladder. In Comprehensive Physiology, R. Terjung (Ed.) 2016;6(3):1549–77. https://doi.org/10.1002/cphy.c150050.

  45. Sharifi M, Ghafourian T. Estimation of biliary excretion of foreign compounds using properties of molecular structure. AAPS J. 2014;16(1):65–78. https://doi.org/10.1208/s12248-013-9541-z.

    Article  CAS  PubMed  Google Scholar 

  46. Bteich M, Poulin P, Haddad S. Comparative assessment of extrapolation methods based on the conventional free drug hypothesis and plasma protein-mediated hepatic uptake theory for the hepatic clearance predictions of two drugs extensively bound to both the albumin and Alpha-1- acid glycoprotein. J Pharm Sci. 2021;110(3):1385–91. https://doi.org/10.1016/j.xphs.2020.11.009.

    Article  CAS  PubMed  Google Scholar 

  47. Bowman CM, Chen E, Chen L, Chen Y-C, Liang X, Wright M, Chen Y, Mao J. Changes in organic anion transporting polypeptide uptake in HEK293 overexpressing cells in the presence and absence of human plasma. Drug Metab Dispos. 2020;48:18–24. https://doi.org/10.1124/dmd.119.088948.

    Article  CAS  PubMed  Google Scholar 

  48. Wald JA, Law RM, Ludwig EA, Sloan RR, Middleton E Jr, Jusko WJ. Evaluation of dose-related pharmacokinetics and pharmacodynamics of prednisolone in man. J Pharmacokinet Biopharm. 1992;20(6):567–89. https://doi.org/10.1007/BF01064420.

    Article  CAS  PubMed  Google Scholar 

  49. Kisseleva EP, Vashkevich II, Avvakumov GV, Strel'chyonok OA. Transcortin does not restrict the transmembrane transfer of cortisol. Biochem Biophys Res Commun. 1990;173:961–6. https://doi.org/10.1016/s0006-291x(05)80879-4.

    Article  CAS  PubMed  Google Scholar 

  50. Hammond GL, Smith CL, Paterson NAM, Sibbald WJ. A role for corticosteroid-binding globulin in delivery of cortisol to activated neutrophils. J Clin Endocrinol Metab. 1990;71:34–9. https://doi.org/10.1210/jcem-71-1-34.

    Article  CAS  PubMed  Google Scholar 

  51. Stahn C, Löwenberg M, Hommes DW, Buttgereit F. Molecular mechanisms of glucocorticoid action and selective glucocorticoid receptor agonists. Mol Cell Endocrinol. 2007;275(1–2):71–8. https://doi.org/10.1016/j.mce.2007.05.019.

    Article  CAS  PubMed  Google Scholar 

  52. Jusko WJ. Pharmacokinetics and receptor-mediated pharmacodynamics of corticosteroids. Toxicology. 1995;102(1–2):189–96. https://doi.org/10.1016/0300-483x(95)03047-j.

    Article  CAS  PubMed  Google Scholar 

  53. Rohatagi S. Pharmacokinetic and pharmacodynamic modeling of corticosteroids after single and multiple administration. PhD Thesis 1995 (Uni Florida). Chapter 13 pp 168–174. https://ufdc.ufl.edu/AA00053830/00001.

  54. van Steeg TJ. van. The 'free drug hypothesis': fact or fiction?. PhD thesis 208 (Uni Leiden). Chapter 2, 16–34. https://scholarlypublications.universiteitleiden.nl/handle/1887/13283.

  55. Jones RD, Jones HM, Rowland M, Gibson CR, Yates JWT, Chien JY, Ring BJ, Adkison KK, Ku MS, He H, Vuppugalla R, Marathe P, Fischer V, Dutta S, Sinha VK, Björnsson T, Lavé T, Poulin P. PhRMA CPCDC initiative on predictive models of human pharmacokinetics, part 2: comparative assessment of prediction methods of human volume of distribution. J Pharm Sci. 2011;100(10):4074–89. https://doi.org/10.1002/jps.22553.

    Article  CAS  PubMed  Google Scholar 

  56. Ring BJ, Chien JY, Adkison KK, Jones HM, Rowland M, Jones RD, Yates JWT, Ku MS, Gibson CR, He H, Vuppugalla R, Marathe P, Fischer V, Dutta S, Sinha VK, Björnsson T, Lavé T, Poulin P. PhRMA CPCDC initiative on predictive models of human pharmacokinetics, part 3: comparative assessement of prediction methods of human clearance. J Pharm Sci. 2011;100(10):4090–110. https://doi.org/10.1002/jps.22552.

    Article  CAS  PubMed  Google Scholar 

  57. Di L, Riccardi K, Tess D. Evolving approaches on measurements and applications of intracellular free drug concentration and Kpuu in drug discovery. Expert Opin Drug Metab Toxicol. 2021;17(7):733–46. https://doi.org/10.1080/17425255.2021.1935866.

    Article  CAS  PubMed  Google Scholar 

  58. Smith DA, Rowland M. Intracellular and Intraorgan concentrations of small molecule drugs: theory, uncertainties in infectious diseases and oncology, and promise. Drug Metab Dispos. 2019;47:665–72. https://doi.org/10.1124/dmd.118.085951.

    Article  CAS  PubMed  Google Scholar 

  59. Mateus A, Gordon LJ, Wayne GJ, Almqvist H, Axelssond H, Seashore-Ludlowd B, et al. Prediction of intracellular exposure bridges the gap between target- and cell-based drug discovery. Proc Natl Acad Sci U S A. 2017;114(30):E6231–9. https://doi.org/10.1073/pnas.1701848114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Trünkle C, Lechner C, Korr D, Bouché L, Barak N, Fernández-Montalván A, Süssmuth RD, Reichel A. Concentration dependence of the unbound partition coefficient Kpuu and its application to correct for exposure-related discrepancies between biochemical and cellular potency of KAT6A inhibitors. Drug Metab Dispos. 2020;48:553–62. https://doi.org/10.1124/dmd.120.090563.

    Article  CAS  PubMed  Google Scholar 

  61. Colclough N, Chen K, Johnström P, Strittmatter N, Yan Y, Wrigley GL, Schou M, Goodwin R, Varnäs K, Adua SJ, Zhao M, Nguyen DX, Maglennon G, Barton P, Atkinson J, Zhang L, Janefeldt A, Wilson J, Smith A, et al. Preclinical comparison of the blood–brain barrier permeability of Osimertinib with other EGFR TKIs. Clin Cancer Res. 2021;27:189–201. https://doi.org/10.1158/1078-0432.CCR-19-1871.

    Article  CAS  PubMed  Google Scholar 

  62. Zhou X, Graff O, Chen C. Quantifying the probability of pharmacological success to inform compound progression decisions. PLoS One. 2020;15(10):e0240234. https://doi.org/10.1371/journal.pone.0240234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Peletier LA, Benson N, Van der Graaf PH. Impact of protein binding on receptor occupancy: a two-compartment model. J Theor Biol. 2010;265(4):657–71. https://doi.org/10.1016/j.jtbi.2010.05.035.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

None.

Author information

Authors and Affiliations

Authors

Contributions

All authors have provided substantial intellectual input into the design and composition of this review.

Scott Summerfield – Drafting of introduction. Retrieving examples of Free Drug Theory in brain and the associated wording in the document and references. David Fairman – Preparation of arguments around how Free Drug theory is no different any binding interactions (Fig. 1 and nonspecific binding). James Yates – Retrieving examples of Free Drug Theory in non-CNS compartments brain and the associated wording in the document and references.

Corresponding author

Correspondence to Scott G. Summerfield.

Additional information

Guest Editors: Elizabeth de Lange, Irena Loryan, David Smith, Tetsuya Terasaki.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Summerfield, S.G., Yates, J.W.T. & Fairman, D.A. Free Drug Theory – No Longer Just a Hypothesis?. Pharm Res 39, 213–222 (2022). https://doi.org/10.1007/s11095-022-03172-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03172-7

KEY WORDS

Navigation