Skip to main content

Advertisement

Log in

Gemcitabine Co-Encapsulated with Curcumin in Folate Decorated PLGA Nanoparticles; a Novel Approach to Treat Breast Adenocarcinoma

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Curcumin (CUR), an antioxidant with p-glycoprotein inhibiting activity may be encapsulated with gemcitabine (GEM) as nanosuspension to enhance its anticancer potentiality synergistically.

Methods

Folate conjugated single (CUR/GEM) and dual (CUR + GEM) drug-loaded nanoformulations were prepared and evaluated for P-glycoprotein-1 (pgy-1) gene resistance, followed by in vitro cellular uptake and cytotoxicity assay in cells. The in vivo biodistribution and scintigraphic imaging was done after radiolabeling the nanoparticles with 99mTechnetium (99mTc). The tumor inhibition study was conducted in nude mice bearing MDA-MB-231 xenografts.

Results

The folate conjugated dual drug formulations (FCGNPs) gave better results in suppressing the pgy-1 gene and also showed higher cellular uptake, cytotoxicity, apoptosis, and cell cycle arrest. The radiolabeled nanoformulations were highly stable and FCGNPs showed higher accumulation in the MDA-MB-231 tumor region than folate unconjugated dual drug NPs (CGNPs) as evidenced by scintigraphic imaging and biodistribution studies. The in vivo therapeutic efficacy of FCGNPs was higher compared to unconjugated and respective single-drug formulations.

Conclusion

Two drugs in one platform lower breast adenocarcinoma by lowering drug resistance and improving cytotoxic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AFM:

Atomic Force Microscopy

cm:

Centimeter

CUR:

Curcumin

CNPs:

Curcumin loaded nanoparticles

CGNPs:

Curcumin and gemcitabine loaded nanoparticles

DAPI:

4,6-diamino-2-phenylindole

DCC:

N,N′-Dicyclohexylcarbodiimide

DCM:

Dichloromethane

DMSO:

Dimethyl sulfoxide

DSC:

Differential Scanning Calorimetry

EDC-HCl:

1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide-hydrochloride

EPR:

Enhanced Permeability and Retention

FCNPs:

Folate conjugated curcumin loaded nanoparticles

FCGNPs:

Folate conjugated curcumin and gemcitabine loaded nanoparticles

FGNPs:

Folate conjugated gemcitabine loaded nanoparticles

FE-SEM:

Field Emission Scanning electron microscope

FTIR:

Fourier Transform Infrared

g:

Gram

GEM:

Gemcitabine

GNPs:

Gemcitabine loaded nanoparticles

h:

Hour

HRP:

Horseradish-peroxidase

M:

Molar

ml:

Millilitre

MTT:

3-(4,5-Dimethylthiazol-2-yl) -2,5-Diphenyltetrazolium Bromide

NHS:

N-Hydroxysuccinimide

NP:

Nanoparticle

PDI:

Polydispersity index

PI:

Propidium iodide

PLGA:

Poly-D,L-lactic-co-glycolic acid

PVA:

Polyvinyl alcohol

PVDF:

Polyvinylidene fluoride

RME:

Receptor-mediated Endocytosis

rpm:

Rotation per minute

RT-PCR:

Reverse transcription polymerase chain reaction

Tc:

Technetium

TEM:

Transmission electron microscope

TGI:

Tumor Growth Inhibition

TLC:

Thin-layer chromatography

UV-vis:

UltraViolet-visible

XPS:

X-ray photoelectron spectroscopy

XRD:

X-Ray Diffraction

μg:

Microgram

References

  1. Gunasekaran T, Haile T, Nigusse T, Dhanaraju MD. Nanotechnology: an effective tool for enhancing bioavailability and bioactivity of phytomedicine. Asian Pac J Trop Biomed. 2014;4(Suppl 1):S1–7.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Petschauer JS, Madden AJ, Kirschbrown WP, Song G, Zambon WC. The effects of nanoparticle drug loading on the pharmacokinetics of anticancer agents. Nanomedicine (Lond). 2015;10(3):447–63.

    Article  CAS  Google Scholar 

  3. Lin PJ, Tam YK. Enhancing the pharmacokinetic/ pharmacodynamic properties of therapeutic nucleotides using lipid nanoparticle systems. Future Med Chem. 2015;7(13):1751–69.

    Article  CAS  PubMed  Google Scholar 

  4. Torchilin VP. Passive and active drug targeting: drug delivery to tumors as an example. Handb Exp Pharmacol. 2010;197:3–53.

    Article  CAS  Google Scholar 

  5. Sperling RA, Parak WJ. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Phil Trans R Soc A. 2010;368:1333–83.

    Article  CAS  PubMed  Google Scholar 

  6. Kocbek P, Obermajer N, Cegnar M, Kos J, Kristl J. Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody. J Control Release. 2007;120(1–2):18–26.

    Article  CAS  PubMed  Google Scholar 

  7. Hryciuk B, Szymanowski B, Romanowska A, Salt E, Wasąg B, Grala B, et al. Severe acute toxicity following gemcitabine administration: a report of four cases with cytidine deaminase polymorphisms evaluation. Oncol Lett. 2018;15(2):1912–6.

    PubMed  Google Scholar 

  8. Dasari M, Acharya AP, Kim D, Lee S, Lee S, Rhea J, et al. H-gemcitabine: a new gemcitabine Prodrug for treating Cancer. Bioconjug Chem. 2013;24(1):4–8.

    Article  CAS  PubMed  Google Scholar 

  9. Nandini PT, Doijad RC, Shivakumar HN, Dandagi PM. Formulation and evaluation of gemcitabine-loaded solid lipid nanoparticles. Drug Delivery. 2015;22(5):647–51.

    Article  CAS  PubMed  Google Scholar 

  10. Affram K, Udofot O, Cat A, Agyare E. In vitro and in vivo antitumor activity of gemcitabine loaded thermosensitive liposomal nanoparticles and mild hyperthermia in pancreatic cancer. Int J Adv Res (Indore). 2015;3(10):859–74.

    CAS  Google Scholar 

  11. Sahu BP, Hazarika H, Bharadwaj R, Loying P, Baishya R, Dash SK, et al. Curcumin-docetaxel co-loaded nanosuspension for enhanced anti-breast cancer activity. Expert Opin Drug Del. 2016;13(8):1065–74.

    Article  CAS  Google Scholar 

  12. Li R, Xu W, Eun JS, Lee MK. Combination of Curcumin and paclitaxel-loaded solid lipid nanoparticles to overcome multidrug resistance. J Pharm Investig. 2011;41(6):381–6.

    CAS  Google Scholar 

  13. Mukherjee B, Santra K, Pattnaik G, Ghosh S. Preparation, characterization and in-vitro evaluation of sustained release protein-loaded nanoparticles based on biodegradable polymers. Int J Nanomedicine. 2008;3(4):487–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Das M, Sahoo SK. Folate decorated dual drug loaded nanoparticle: role of Curcumin in enhancing therapeutic potential of Nutlin-3a by reversing multidrug resistance. PLoS One. 2012;7(3):1–18.

    Google Scholar 

  15. Gupta A, Kaur CD, Saraf S, Saraf S. Formulation, characterization, and evaluation of ligand-conjugated biodegradable quercetin nanoparticles for active targeting. Artif Cells NanomedB. 2015;44(3):960–70.

    Google Scholar 

  16. Gaonkar RH, Ganguly S, Dewanjee S, Sinha S, Gupta A, Ganguly S, et al. Garcinol loaded vitamin E TPGS emulsified PLGA nanoparticles: preparation, physicochemical characterization, in vitro and in vivo studies. Sci Rep. 2017;7(530). https://doi.org/10.1038/s41598-017-00696-6.

  17. Pillai JJ, Thulasidasan AKT, Anto RJ, Devika NC, Ashwanikumar N, Kumar GSV. Curcumin entrapped folic acid conjugated PLGA–PEG nanoparticles exhibit enhanced anticancer activity by site specific delivery. RSC Adv. 2015;5:25518–24.

    Article  CAS  Google Scholar 

  18. Ganguly S, Gaonkar RH, Sinha S, Gupta A, Chattopadhyay D, Chattopadhyay S, et al. Fabrication of surfactant-free quercetin-loaded PLGA nanoparticles: evaluation of hepatoprotective efficacy by nuclear scintigraphy. J Nanopart Res. 2016;18(196):1–14.

    CAS  Google Scholar 

  19. Mukhopadhyay R, Kazi J, Debnath MC. Synthesis and characterization of copper nanoparticles stabilized with Quisqualis indica extract: evaluation of its cytotoxicity and apoptosis in B16F10 melanoma cells. Biomed Pharmacother. 2018;97:1373–85.

    Article  CAS  PubMed  Google Scholar 

  20. Baishya R, Nayak DK, Kumar D, Sinha S, Gupta A, Ganguly S, et al. Ursolic acid loaded PLGA nanoparticles: in vitro and in vivo evaluation to explore tumor targeting ability on B16F10 melanoma cell lines. Pharm Res. 2016;3(11):2691–703.

    Article  Google Scholar 

  21. Misra R, Sahoo SK. Coformulation of Doxorubicin and Curcumin in Poly-(D,L-lactide-co-glycolide) Nanoparticles Suppresses the Development of Multidrug Resistance in K562 Cells. Mol Pharm. 2011;8:852–66.

    Article  CAS  PubMed  Google Scholar 

  22. Kaul G, Amiji M. Biodistribution and targeting potential of poly(ethylene glycol)-modified gelatin nanoparticles in subcutaneous murine tumor model. J Drug Target. 2004;12(9–10):585–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ranjan AP, Mukerjee A, Helson L, Gupta R, Vishwanatha JK. Efficacy of liposomal Curcumin in a human pancreatic tumor Xenograft model: inhibition of tumor growth and angiogenesis. Anticancer Res. 2013;33:3603–10.

    CAS  PubMed  Google Scholar 

  24. Zhang J, Zhang P, Zou Q, Li X, Fu J, Luo Y, et al. Co-delivery of gemcitabine and paclitaxel in cRGD-modified long circulating nanoparticles with asymmetric lipid layers for breast Cancer treatment. Molecules. 2018;23(11):2018. https://doi.org/10.3390/molecules23112906.

    Article  CAS  Google Scholar 

  25. Jaidev LR, Krishnan UM, Sethuraman S. Gemcitabine loaded biodegradable PLGA nanospheres for in vitro pancreatic cancer therapy. Mater Sci Eng C. 2015;47:40–7.

    Article  CAS  Google Scholar 

  26. Wouters A, Pauwels B, Burrows N, Baay M, Deschoolmeester V, Vu TN, et al. The radiosensitising effect of gemcitabine and its main metabolite dFdU under low oxygen conditions is in vitro not dependent on functional HIF-1 protein. BMC Cancer. 2014;14(594).

  27. Courtemanche C, Elson-Schwab I, Mashiyama ST, Kerry N, Ames BN. Folate deficiency inhibits the proliferation of primary human CD8_ T lymphocytes in vitro. J Immunol. 2004;173:3186–92.

    Article  CAS  PubMed  Google Scholar 

  28. Xie Q, Jia L, Liu Y, Wei C. Synergetic anticancer effect of combined gemcitabine and photodynamic therapy on pancreatic cancer in vivo. World J Gastroenterol. 2009;15(6):737–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stan SD, Hahm E, Warin R, Singh SV. Withaferin a causes FOXO3a- and Bim-dependent apoptosis and inhibits growth of human breast Cancer cells in vivo. Cancer Res. 2008;68(18):7661–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gillet JP, Efferth T, Remacle J. Chemotherapy-induced resistance by ATP-binding cassette transporter genes. Biochim. Biophys. Acta, Rev. Cancer. 2007;1775(2):237–62.

    Article  CAS  Google Scholar 

  31. Samanta D, Gilkes DM, Chaturvedia P, Xianga L, Semenza GL. Hypoxia-inducible factors are required for chemotherapy resistance of breast cancer stem cells. PNAS. 2014:5429–38.

  32. Lopes-Rodrigues V, Sousa E, Vasconcelos MH. Curcumin as a modulator of P-glycoprotein in cancer: challenges and perspectives. Pharmaceuticals. 2016;9(71).

  33. Necela BM, Crozier JA, Andorfer CA, Lewis-Tuffin L, Kachergus JM, Geiger XJ, et al. Folate Receptor-α (FOLR1) Expression and Function in Triple Negative Tumors. PLOS One. 2015;10(3). https://doi.org/10.1371/journal.pone.0122209.

  34. Jarshalek JP, Sheeran PS, Ingram P, Dayton PA, Witte RS, Matsunaga TO. Intracellular delivery and ultrasonic activation of folate receptor-targeted phase change contrast agents in breast cancer cells in vitro. J Control Release. 2016;243:69–77.

    Article  Google Scholar 

  35. Singh R, Lillard JW. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009;86(3):215–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vaseva AV, Moll UM. The mitochondrial p53 pathway. Biochim Biophys Acta. 2009;1787(5):1–18.

    Google Scholar 

  37. Yamamoto Y, Gaynor RB. Therapeutic potential of inhibition of the NF-κB pathway in the treatment of inflammation and cancer. J Clin Invest. 2001;107(2):135–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lim JW, Kim H, Kim KH. Nuclear factor-kappaB regulates cyclooxygenase-2 expression and cell proliferation in human gastric cancer cells. Lab Investig. 2001;81(3):349–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements AND DISCLOSURES

The authors would like to acknowledge the Director of CSIR-Indian Institute of Chemical Biology, Kolkata for providing necessary facilities to carry out the experiments. R.M. gratefully acknowledges DST-INSPIRE for providing the fellowship. The authors would like to acknowledge Dr. Manabendra Mukherjee and Mr. Goutam Sarkar of Saha Institute of Nuclear Physics for helping with the XPS experiment and TEM facility of the same institute for carrying out transmission electron microscopy. The authors acknowledge SEM facility of Jadavpur University for their help in SEM experiments. The authors would like to thank Mr. T. Muruganandan and Mrs. Debalina Chakraborty for their help in AFM and flow cytometry experiments respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mita Chatterjee Debnath.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 14 kb)

ESM 2

(DOCX 13 kb)

ESM 3

(DOCX 13 kb)

ESM 4

(JPG 582 kb)

ESM 5

(JPG 453 kb)

ESM 6

(JPG 1779 kb)

ESM 7

(JPG 670 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhopadhyay, R., Sen, R., Paul, B. et al. Gemcitabine Co-Encapsulated with Curcumin in Folate Decorated PLGA Nanoparticles; a Novel Approach to Treat Breast Adenocarcinoma. Pharm Res 37, 56 (2020). https://doi.org/10.1007/s11095-020-2758-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-020-2758-5

Key Words

Navigation