Skip to main content

Advertisement

Log in

Ocular Pharmacokinetics of a Topical Ophthalmic Nanomicellar Solution of Cyclosporine (Cequa®) for Dry Eye Disease

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Cequa®, a unique and first-in-class preservative free cyclosporine-A (CsA) nanomicellar topical formulation was recently approved by US FDA for treatment of dry eye disease or keratoconjuntivitis sicca (KCS). Being highly hydrophobic, CsA is currently available as an oil based emulsion, which has its own shortcomings. Developing an aqueous and clear formulation of CsA is imperative yet a challenging need in the quest for a safe and better drug product. In this regard, a novel, clear, aqueous nanomicellar solution of CsA was developed which has the potential to deliver therapeutic concentrations of CsA with minimal discomfort to patients. Highly promising pre-clinical results of Cequa® (OTX-101), has led to its advancement to the clinical trials. Phase III clinical trials have demonstrated that OTX-101 is highly effective, safe, and has a rapid onset of action in treating KCS. This review presents a comprehensive insight on formulation development, preclinical and clinical pharmacokinetic results of Cequa®. Additionally, the translational development of Cequa® from the laboratory benchtop to patient bedside has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

APCs:

Antigen presenting cells

AUC:

Area under curve

BSS:

Balanced salt solution

CaN:

Calcineurin

CAPIR:

Circulation, accumulation, penetration, internalization and release

CMC:

Critical micelle concentration

CsA:

Cyclosporine

FK:

Filamentary keratitis

ICAM-1:

Intercellular adhesion molecule 1

IC:

Impression cytology

IL-2:

Interleukin 2

IOP:

Intraocular pressure

KCS:

Keratoconjunctivitis sicca

LFU:

Lacrimal functional unit

MGD:

Meibomian gland dysfunction

MMP-9:

Matrix metallopeptidase 9

MPTP:

Mitochondrial permeability transition pore

NF-ATc:

Cytoplasmic component of nuclear factor of activated T cells

NF-ATn:

Nuclear component of nuclear factor of activated T cells

PEG:

Polyethylene glycol

PK:

Pharmacokinetics

VCAM-1:

Vascular cell adhesion molecule-1

References

  1. Javadi MA, Feizi S. Dry eye syndrome. J Ophthalmic Vis Res. 2011;6(3):192–8.

    PubMed  PubMed Central  Google Scholar 

  2. Gayton JL. Etiology, prevalence, and treatment of dry eye disease. Clin Ophthalmol. 2009;3:405–12.

    PubMed  PubMed Central  Google Scholar 

  3. Hawkes N. US's $2bn annual spend on dry eye disease "brings tears to your eyes," say critics. BMJ. 2018;360:k492.

    PubMed  Google Scholar 

  4. Yu J, Asche CV, Fairchild CJ. The economic burden of dry eye disease in the United States: a decision tree analysis. Cornea. 2011;30(4):379–87.

    PubMed  Google Scholar 

  5. Tsubota K. Tear dynamics and dry eye. Prog Retin Eye Res. 1998;17(4):565–96.

    CAS  PubMed  Google Scholar 

  6. Butovich IA. Tear film lipids. Exp Eye Res. 2013;117:4–27.

    CAS  PubMed  Google Scholar 

  7. Cwiklik L. Tear film lipid layer: a molecular level view. Biochim Biophys Acta. 2016;1858(10):2421–30.

    CAS  PubMed  Google Scholar 

  8. Zhang X, VJ M, Qu Y, He X, Ou S, Bu J, et al. Dry Eye Management: Targeting the Ocular Surface Microenvironment. Int J Mol Sci. 2017;18(7).

  9. Stern ME, Beuerman RW, Fox RI, Gao J, Mircheff AK, Pflugfelder SC. The pathology of dry eye: the interaction between the ocular surface and lacrimal glands. Cornea. 1998;17(6):584–9.

    CAS  PubMed  Google Scholar 

  10. Research in dry eye: report of the Research Subcommittee of the International Dry Eye WorkShop (2007). The ocular surface. 2007;5(2):179–193.

  11. Messmer EM. The pathophysiology, diagnosis, and treatment of dry eye disease. Dtsch Arztebl Int. 2015;112(5):71–81 quiz 82.

    PubMed  PubMed Central  Google Scholar 

  12. Reyes JL, Vannan DT, Eksteen B, Avelar IJ, Rodriguez T, Gonzalez MI, et al. Innate and adaptive cell populations driving inflammation in dry eye disease. Mediat Inflamm. 2018;2018:2532314.

    Google Scholar 

  13. Kuklinski E, Asbell PA. Sjogren's syndrome from the perspective of ophthalmology. Clin Immunol. 2017;182:55–61.

    CAS  PubMed  Google Scholar 

  14. Perry HD. Dry eye disease: pathophysiology, classification, and diagnosis. Am J Manag Care. 2008;14(3 Suppl):S79–87.

    PubMed  Google Scholar 

  15. Sullivan DA, Dana R, Sullivan RM, Krenzer KL, Sahin A, Arica B, et al. Meibomian gland dysfunction in primary and secondary Sjogren syndrome. Ophthalmic Res. 2018;59(4):193–205.

    PubMed  Google Scholar 

  16. Milner MS, Beckman KA, Luchs JI, Allen QB, Awdeh RM, Berdahl J, et al. Dysfunctional tear syndrome: dry eye disease and associated tear film disorders - new strategies for diagnosis and treatment. Curr Opin Ophthalmol. 2017;27(Suppl 1):3–47.

    PubMed  Google Scholar 

  17. Roy NS, Wei Y, Kuklinski E, Asbell PA. The growing need for validated biomarkers and endpoints for dry eye clinical research. Invest Ophthalmol Vis Sci. 2017;58(6):BIO1–BIO19.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Messmer EM, von Lindenfels V, Garbe A, Kampik A. Matrix metalloproteinase 9 testing in dry eye disease using a commercially available point-of-care immunoassay. Ophthalmology. 2016;123(11):2300–8.

    PubMed  Google Scholar 

  19. Buckley RJ. Assessment and management of dry eye disease. Eye. 2018;32(2):200–3.

    CAS  PubMed  Google Scholar 

  20. Friedman NJ. Impact of dry eye disease and treatment on quality of life. Curr Opin Ophthalmol. 2010;21(4):310–6.

    PubMed  Google Scholar 

  21. Levy O, Labbe A, Borderie V, Laroche L, Bouheraoua N. Topical cyclosporine in ophthalmology: pharmacology and clinical indications. J Fr Ophtalmol. 2016;39(3):292–307.

    CAS  PubMed  Google Scholar 

  22. Schultz C. Safety and efficacy of cyclosporine in the treatment of chronic dry eye. Ophthalmol Eye Dis. 2014;6:37–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Leonardi A, Flamion B, Baudouin C. Keratitis in dry eye disease and topical Ciclosporin a. Ocul Immunol Inflamm. 2017;25(4):577–86.

    CAS  PubMed  Google Scholar 

  24. Utine CA, Stern M, Akpek EK. Clinical review: topical ophthalmic use of cyclosporin a. Ocul Immunol Inflamm. 2010;18(5):352–61.

    CAS  PubMed  Google Scholar 

  25. Boboridis KG, Konstas AGP. Evaluating the novel application of cyclosporine 0.1% in ocular surface disease. Expert Opin Pharmacother. 2018;19(9):1027–39.

    CAS  PubMed  Google Scholar 

  26. Matsuda S, Koyasu S. Mechanisms of action of cyclosporine. Immunopharmacology. 2000;47(2–3):119–25.

    CAS  PubMed  Google Scholar 

  27. Pietro DCaAD. Systemic Cyclosporin in the treatment of psoriasis. IntechOpen 2012.

  28. Sall K, Stevenson OD, Mundorf TK, Reis BL. Two multicenter, randomized studies of the efficacy and safety of cyclosporine ophthalmic emulsion in moderate to severe dry eye disease. CsA phase 3 study group. Ophthalmology. 2000;107(4):631–9.

    CAS  PubMed  Google Scholar 

  29. Sy A, O'Brien KS, Liu MP, Cuddapah PA, Acharya NR, Lietman TM, et al. Expert opinion in the management of aqueous deficient dry eye disease (DED). BMC Ophthalmol. 2015;15:133.

    PubMed  PubMed Central  Google Scholar 

  30. Bell TA, Hunnisett AG. Cyclosporin a: tissue levels following topical and systemic administration to rabbits. Br J Ophthalmol. 1986;70(11):852–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Pfau B, Kruse FE, Rohrschneider K, Zorn M, Fiehn W, Burk RO, et al. Comparison between local and systemic administration of cyclosporin a on the effective level in conjunctiva, aqueous humor and serum. Der Ophthalmologe : Zeitschrift der Deutschen Ophthalmologischen Gesellschaft. 1995;92(6):833–9.

    CAS  Google Scholar 

  32. Ganesan V, Milford DV, Taylor CM, Hulton SA, Parvaresh S, Ramani P. Cyclosporin-related nephrotoxicity in children with nephrotic syndrome. Pediatr Nephrol. 2002;17(3):225–6 author reply 227.

    CAS  PubMed  Google Scholar 

  33. el-Asrar AM, Tabbara KF, Geboes K, Missotten L, Desmet V. An immunohistochemical study of topical cyclosporine in vernal keratoconjunctivitis. Am J Ophthalmol. 1996;121(2):156–61.

    CAS  PubMed  Google Scholar 

  34. Gelderblom H, Verweij J, Nooter K, Sparreboom A. Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer. 2001;37(13):1590–8.

    CAS  PubMed  Google Scholar 

  35. Parrilha LR, Nai GA, Giuffrida R, Barbero RC, Padovani LD, Pereira RH, et al. Comparison of 1% cyclosporine eye drops in olive oil and in linseed oil to treat experimentally-induced keratoconjunctivitis sicca in rabbits. Arq Bras Oftalmol. 2015;78(5):295–9.

    PubMed  Google Scholar 

  36. Benitez del Castillo JM, del Aguila C, Duran S, Hernandez J, Garcia Sanchez J. Influence of topically applied cyclosporine a in olive oil on corneal epithelium permeability. Cornea. 1994;13(2):136–40.

    CAS  PubMed  Google Scholar 

  37. Williams DL. A comparative approach to topical cyclosporine therapy. Eye. 1997;11(Pt 4):453–64.

    PubMed  Google Scholar 

  38. Agarwal P, Rupenthal ID. Modern approaches to the ocular delivery of cyclosporine a. Drug Discov Today. 2016;21(6):977–88.

    CAS  PubMed  Google Scholar 

  39. Stevenson D, Tauber J, Reis BL. Efficacy and safety of cyclosporin a ophthalmic emulsion in the treatment of moderate-to-severe dry eye disease: a dose-ranging, randomized trial. The Cyclosporin a phase 2 study group. Ophthalmology. 2000;107(5):967–74.

    CAS  PubMed  Google Scholar 

  40. Prabhu SS, Shtein RM, Michelotti MM, Cooney TM. Topical cyclosporine a 0.05% for recurrent anterior uveitis. Br J Ophthalmol. 2016;100(3):345–7.

    PubMed  Google Scholar 

  41. Rhee MK, Mah FS. Clinical utility of cyclosporine (CsA) ophthalmic emulsion 0.05% for symptomatic relief in people with chronic dry eye: a review of the literature. Clin Ophthalmol. 2017;11:1157–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hoy SM. Ciclosporin ophthalmic emulsion 0.1%: a review in severe dry eye disease. Drugs. 2017;77(17):1909–16.

    CAS  PubMed  Google Scholar 

  43. Boujnah Y, Mouchel R, El-Chehab H, Dot C, Burillon C, Kocaba V. Prospective, monocentric, uncontrolled study of efficacy, tolerance and adherence of cyclosporin 0.1% for severe dry eye syndrome. J Fr Ophtalmol. 2018;41(2):129–35.

    CAS  PubMed  Google Scholar 

  44. Ames P, Galor A. Cyclosporine ophthalmic emulsions for the treatment of dry eye: a review of the clinical evidence. Clinical investigation. 2015;5(3):267–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Baudouin C, de la Maza MS, Amrane M, Garrigue JS, Ismail D, Figueiredo FC, Leonardi A. One-year efficacy and safety of 0.1% cyclosporine a cationic emulsion in the treatment of severe dry eye disease. Eur J Ophthalmol 2017:0.

  46. Stonecipher KG, Chia J, Onyenwenyi A, Villanueva L, Hollander DA. Health claims database study of cyclosporine ophthalmic emulsion treatment patterns in dry eye patients. Ther Clin Risk Manag. 2013;9:409–15.

    PubMed  PubMed Central  Google Scholar 

  47. Lallemand F, Schmitt M, Bourges JL, Gurny R, Benita S, Garrigue JS. Cyclosporine a delivery to the eye: a comprehensive review of academic and industrial efforts. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2017;117:14–28.

    CAS  Google Scholar 

  48. Vaishya RD, Khurana V, Patel S, Mitra AK. Controlled ocular drug delivery with nanomicelles. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014;6(5):422–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kamaleddin MA. Nano-ophthalmology: applications and considerations. Nanomedicine. 2017;13(4):1459–72.

    CAS  PubMed  Google Scholar 

  50. Irfan M, Usman M, Mansha A, Rasool N, Ibrahim M, Rana UA, et al. Thermodynamic and spectroscopic investigation of interactions between reactive red 223 and reactive orange 122 anionic dyes and cetyltrimethyl ammonium bromide (CTAB) cationic surfactant in aqueous solution. TheScientificWorldJOURNAL. 2014;2014:540975.

    PubMed  PubMed Central  Google Scholar 

  51. Tanford C. Thermodynamics of micelle formation: prediction of micelle size and size distribution. Proc Natl Acad Sci U S A. 1974;71(5):1811–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Mandal A, Cholkar K, Khurana V, Shah A, Agrahari V, Bisht R, et al. Topical formulation of self-assembled antiviral prodrug Nanomicelles for targeted retinal delivery. Mol Pharm. 2017;14(6):2056–69.

    CAS  PubMed  Google Scholar 

  53. Lu Y, Yue Z, Xie J, Wang W, Zhu H, Zhang E, et al. Micelles with ultralow critical micelle concentration as carriers for drug delivery. Nat Biomed Eng. 2018;2(5):318–25.

    Google Scholar 

  54. Morishima K, Sugawara S, Yoshimura T, Shibayama M. Structure and rheology of wormlike micelles formed by fluorocarbon-hydrocarbon-type hybrid Gemini surfactant in aqueous solution. Langmuir. 2017;33(24):6084–91.

    CAS  PubMed  Google Scholar 

  55. Dhakal S, Sureshkumar R. Anomalous diffusion and stress relaxation in surfactant micelles. Phys Rev E. 2017;96(1–1):012605.

    PubMed  Google Scholar 

  56. Paradies HH. Shape and size of a nonionic surfactant micelle. Triton X-100 in aqueous solution. J Phys Chem. 1980;84(6):599–607.

    CAS  Google Scholar 

  57. Dill KA, Flory PJ. Molecular organization in micelles and vesicles. Proc Natl Acad Sci. 1981;78(2):676–80.

    CAS  PubMed  Google Scholar 

  58. Ahn YN, Mohan G, Kopelevich DI. Collective degrees of freedom involved in absorption and desorption of surfactant molecules in spherical non-ionic micelles. J Chem Phys. 2012;137(16):164902.

    PubMed  Google Scholar 

  59. Cholkar K, Gilger BC, Mitra AK. Topical, aqueous, clear cyclosporine formulation Design for Anterior and Posterior Ocular Delivery. Transl Vis Sci Technol. 2015;4(3):1.

    PubMed  PubMed Central  Google Scholar 

  60. Lasic DD. Mixed micelles in drug delivery. Nature. 1992;355:279–80.

    CAS  PubMed  Google Scholar 

  61. Alexander-Bryant AA, Vanden Berg-Foels WS, Wen X. Bioengineering strategies for designing targeted cancer therapies. Adv Cancer Res. 2013;118:1–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Kim SA, Jeong KJ, Yethiraj A, Mahanthappa MK. Low-symmetry sphere packings of simple surfactant micelles induced by ionic sphericity. Proc Natl Acad Sci U S A. 2017;114(16):4072–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Xotta G, Mazzucco G, Salomoni VA, Majorana CE, Willam KJ. Composite behavior of concrete materials under high temperatures. Int J Solids Struct. 2015;64–65:86–99.

    Google Scholar 

  64. Lipfert J, Columbus L, Chu VB, Lesley SA, Doniach S. Size and shape of detergent micelles determined by small-angle X-ray scattering. J Phys Chem B. 2007;111(43):12427–38.

    CAS  PubMed  Google Scholar 

  65. Chen H, Kim S, Li L, Wang S, Park K, Cheng JX. Release of hydrophobic molecules from polymer micelles into cell membranes revealed by Forster resonance energy transfer imaging. Proc Natl Acad Sci U S A. 2008;105(18):6596–601.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang J, Mao W, Lock LL, Tang J, Sui M, Sun W, et al. The role of micelle size in tumor accumulation, penetration, and treatment. ACS Nano. 2015;9(7):7195–206.

    CAS  PubMed  Google Scholar 

  67. Chopra P, Hao J, Li SK. Iontophoretic transport of charged macromolecules across human sclera. Int J Pharm. 2010;388(1–2):107–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Komai Y, Ushiki T. The three-dimensional organization of collagen fibrils in the human cornea and sclera. Invest Ophthalmol Vis Sci. 1991;32(8):2244–58.

    CAS  PubMed  Google Scholar 

  69. Motolko M, Breslin CW. The effect of pH and osmolarity on the ability of tolerate artificial tears. Am J Ophthalmol. 1981;91(6):781–4.

    CAS  PubMed  Google Scholar 

  70. Suknuntha K, Tantishaiyakul V, Worakul N, Taweepreda W. Characterization of muco- and bioadhesive properties of chitosan, PVP, and chitosan/PVP blends and release of amoxicillin from alginate beads coated with chitosan/PVP. Drug Dev Ind Pharm. 2011;37(4):408–18.

    CAS  PubMed  Google Scholar 

  71. Cholkar K, Gilger BC, Mitra AK. Topical delivery of aqueous micellar resolvin E1 analog (RX-10045). Int J Pharm. 2016;498(1–2):326–34.

    CAS  PubMed  Google Scholar 

  72. Ashim K. Mitra SLW, Eugene J. McNally topical formulations and uses thereof. In. USA: Sun Pharma Global FZE; 2015.

  73. Mandal A, Pal D, Agrahari V, Trinh HM, Joseph M, Mitra AK. Ocular delivery of proteins and peptides: challenges and novel formulation approaches. Adv Drug Deliv Rev. 2018;126:67–95.

    CAS  PubMed  Google Scholar 

  74. Mandal A, Bisht R, Rupenthal ID, Mitra AK. Polymeric micelles for ocular drug delivery: from structural frameworks to recent preclinical studies. J Control Release. 2017;248:96–116.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Hughes PM, Olejnik O, Chang-Lin JE, Wilson CG. Topical and systemic drug delivery to the posterior segments. Adv Drug Deliv Rev. 2005;57(14):2010–32.

    CAS  PubMed  Google Scholar 

  76. Hernandez C, Garcia-Ramirez M, Corraliza L, Fernandez-Carneado J, Farrera-Sinfreu J, Ponsati B, et al. Topical administration of somatostatin prevents retinal neurodegeneration in experimental diabetes. Diabetes. 2013;62(7):2569–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Schoenwald RD, Deshpande GS, Rethwisch DG, Barfknecht CF. Penetration into the anterior chamber via the conjunctival/scleral pathway. J Ocul Pharmacol Ther. 1997;13(1):41–59.

    CAS  PubMed  Google Scholar 

  78. Maurice DM. Drug delivery to the posterior segment from drops. Surv Ophthalmol. 2002;47(Suppl 1):S41–52.

    PubMed  Google Scholar 

  79. Cholkar K. Topical clear aqueous Nanomicellar formulations for anterior and posterior ocular drug delivery. In. Kansas City University of Missouri – Kansas City; 2015.

  80. Luschmann C, Herrmann W, Strauss O, Luschmann K, Goepferich A. Ocular delivery systems for poorly soluble drugs: an in-vivo evaluation. Int J Pharm. 2013;455(1–2):331–7.

    CAS  PubMed  Google Scholar 

  81. Ashim K. Mitra PRV, Ulrich M. Grau Topical Drug Delivery Systems For Ophthalmic Use. In.: Aurinia Pharmaceuticals Inc Apr. 28, 2015.

  82. Acheampong AA, Shackleton M, Tang-Liu DD, Ding S, Stern ME, Decker R. Distribution of cyclosporin a in ocular tissues after topical administration to albino rabbits and beagle dogs. Curr Eye Res. 1999;18(2):91–103.

    CAS  PubMed  Google Scholar 

  83. Schwartz LM, Woloshin S. A clear-eyed view of Restasis and chronic dry eye disease. JAMA Intern Med. 2018;178(2):181–2.

    PubMed  Google Scholar 

  84. Gilger SLWWKPVBC. Ocular distribution of cyclosporine following topical administration of OTX-101 in New Zealand white rabbits. In.The Association for Research in Vision and Ophthalmology. Honolulu, Hawaii; 2018.

  85. Tauber J, Schechter BA, Bacharach J, Toyos MM, Smyth-Medina R, Weiss SL, et al. A phase II/III, randomized, double-masked, vehicle-controlled, dose-ranging study of the safety and efficacy of OTX-101 in the treatment of dry eye disease. Clin Ophthalmol. 2018;12:1921–9.

    PubMed  PubMed Central  Google Scholar 

  86. Sun Pharma Announces U.S. FDA Approval of CEQUA™ to Treat Dry Eye Disease. Sun Pharmaceutical Industries Ltd.; Available from: https://www.businesswire.com/news/home/20180815005765/en/Sun-Pharma-Announces-U.S.-FDA-Approval-CEQUA%E2%84%A2. Accessed 29 Nov 2018.

  87. Sheppard JD, Torkildsen GL, Lonsdale JD, D'Ambrosio FA Jr, McLaurin EB, Eiferman RA, et al. Lifitegrast ophthalmic solution 5.0% for treatment of dry eye disease: results of the OPUS-1 phase 3 study. Ophthalmology. 2014;121(2):475–83.

    PubMed  Google Scholar 

  88. Tauber J, Karpecki P, Latkany R, Luchs J, Martel J, Sall K, et al. Investigators O-. Lifitegrast ophthalmic solution 5.0% versus placebo for treatment of dry eye disease: results of the randomized phase III OPUS-2 study. Ophthalmology. 2015;122(12):2423–31.

    PubMed  Google Scholar 

  89. Jodi Luchs M. Phase 3 Clinical Results of Cyclosporine 0.09% in a New Nanomicellar Ophthalmic Solution to Treatment Keratoconjunctivitis Sicca. In.American Society of Cataract and Refractive Surgery (ASCRS) Annual Meeting Washington, DC; 2018.

  90. Lifitegrast (Xiidra) for Dry Eye Disease. Jama. 2017;317(14):1473–1474.

  91. Kim HS, Kim TI, Kim JH, Yoon KC, Hyon JY, Shin KU, et al. Evaluation of clinical efficacy and safety of a novel Cyclosporin a Nanoemulsion in the treatment of dry eye syndrome. J Ocul Pharmacol Ther. 2017;33(7):530–8.

    CAS  PubMed  Google Scholar 

  92. Schultz C. Voclosporin as a treatment for noninfectious uveitis. Ophthalmol Eye Dis. 2013;5:5–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Abidi A, Shukla P, Ahmad A. Lifitegrast: a novel drug for treatment of dry eye disease. J Pharmacol Pharmacother. 2016;7(4):194–8.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements and Disclosures

The authors would like to acknowledge the contributions of Dr. Kishore Cholkar and Dr. Brian C. Gilger for the pharmacokinetic portions of the pre-clinical studies. The authors also acknowledge Joseph Tauber (Tauber Eye Centre), Sidney L. Weiss (Auven Therapeutics), William Kramer (Kramer consulting LLC) and Poonam Velagaleti (I-novion, Inc.) for their contributions in the various phases of the clinical studies. Authors also acknowledge Ocular Technologies Sarl (now wholly owned subsidiary of Sun Pharmaceutical Industries) and Sun Pharmaceutical Industries for sponsoring, conducting, monitoring and analyzing the clinical studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashim K. Mitra.

Additional information

Guest Editors: Hovhannes J Gukasyan, Shumet Hailu, and Thomas Karami

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, A., Gote, V., Pal, D. et al. Ocular Pharmacokinetics of a Topical Ophthalmic Nanomicellar Solution of Cyclosporine (Cequa®) for Dry Eye Disease. Pharm Res 36, 36 (2019). https://doi.org/10.1007/s11095-018-2556-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2556-5

Key words

Navigation