Skip to main content

Advertisement

Log in

Pharmaceutical Potential of a Novel Chitosan Derivative Schiff Base with Special Reference to Antibacterial, Anti-Biofilm, Antioxidant, Anti-Inflammatory, Hemocompatibility and Cytotoxic Activities

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Chitosan and its derivatives possess several unique properties relevant in the field of pharmaceutics and medicinal chemistry. This study aimed to evaluate the pharmaceutical performance of an innovative chitosan derivative, methyl acrylate chitosan bearing p-nitrobenzaldehyde (MA*CS*pNBA) Schiff base.

Methods

The antibacterial activity of MA*CS*pNBA was tested against multi-drug resistant (MDR) Gram-negative and Gram-positive bacteria using agar-well diffusion method. Anti-biofilm formation was analyzed using a microtitre plate. Antioxidant assays were performed to assess the scavenging activity of MA*CS*pNBA using DPPH, hydrogen peroxide, superoxide together with its reducing power activity. Anti-inflammatory activity was evaluated by albumin denaturation, membrane stabilization, and proteinase inhibition methods. MA*CS*pNBA was tested for its hemolytic efficiency on human erythrocytes. Cytotoxicity of MA*CS*pNBA was evaluated by MTT assay.

Results

MA*CS*pNBA showed a significant performance as an antibacterial candidate against MDR bacteria, anti-biofilm, antioxidant and anti-inflammatory biomaterial, evidencing hemocompatibility and no cytotoxicity. It exhibited a significant negative correlation with biofilm formation by the MDR-PA-09 strain. Biological activities were found to be significantly concentration-dependent.

Conclusions

the newly chitosan derivative MA*CS*pNBA showed to be promising for pharmaceutical applications, expanding the treatment ways toward skin burn infections since it allied excellent antibacterial, anti-biofilm, antioxidant, anti-inflammatory, hemocompatibility and absence of cytotoxic activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

CrI:

Crystallinity index

DMEM:

Dulbecco’s Modified Eagle’s medium

DMSO:

Dimethyl sulfoxide

DPPH:

2,2-diphenyl-2-picrylhydrazyl

DRPs:

Drug resistance profiles

EC50 :

Effective concentration 50

FT-IR:

Fourier transform infrared

H2O2 :

Hydrogen peroxide

IZD:

Inhibition zone diameter

MA*CS*pNBA:

Aminated chitosan bearing p-nitrobenzaldehyde

MCF-10A:

Normal breast epithelial cell line

MCF-7:

Cancerous breast epithelial cell line

MDR:

Multi-drug resistance

MDR-EC:

MDR Escherichia coli

MDR-KP:

MDR Klebsiella pneumonia

MDR-PA:

MDR Pseudomonas aeruginosa

MDR-SA:

MDR Staphylococcus aureus

MHA:

Mueller-Hinton agar

MHB:

Mueller-Hinton broth

MIC:

Minimum inhibitory concentration

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NIH-3 T3:

Mouse embryonic fibroblast cell line

PBS:

Phosphate buffered saline

RBCs:

Red blood cells

RCV:

Relative cell viability

TCA:

Trichloroacetic acid

TEM:

Transmission electron microscope

TGA:

Thermogravimetric analysis

TSB:

Tryptic Soy Broth

References

  1. Ali SS, Morsy R, El-Zawawy NA, Fareed M, Bedaiwy MY. Synthesized zinc peroxide nanoparticles (ZnO2-NPs): a novel antimicrobial, anti-elastase, anti-keratinase, and anti-inflammatory approach toward polymicrobial burn wounds. Int J Nanomedicine. 2017;12:6059–73.

    Article  CAS  Google Scholar 

  2. Ali SS, Shaaban MT, Abomohra A, El-Safity K. Macroalgal activity against multiple drug resistant Aeromonas hydrophila: a novel treatment study towards enhancement of fish growth performance. Microb Pathog. 2016;101:89–95.

    Article  CAS  Google Scholar 

  3. Al-Tohamy R, Ali SS, Saad-Allah K, Fareed M, Ali A, El-Badry A, et al. Phytochemical analysis and assessment of antioxidant and antimicrobial activities of some medicinal plant species from Egyptian flora. J Appl Biomed. 2018;16:289–300.

    Article  Google Scholar 

  4. El-Shouny WA, Ali SS, Sun JZ, Samy SM, Ali A. Drug resistance profile and molecular characterization of extended-spectrum beta-lactamase (ESβL)-producing Pseudomonas aeruginosa isolated from burn wound infections. Essential oils and their potential for utilization. Microb Pathog. 2018;116:301–12.

    Article  CAS  Google Scholar 

  5. El Shafay SM, Ali SS, El-Sheekh MM. Antimicrobial activity of some seaweeds species from Red Sea, against multidrug resistant bacteria. Egypt J Aquat Res. 2016;42:65–74.

    Article  Google Scholar 

  6. Grotz E, Tateosian N, Amiano N, Cagel M, Bernabeu E, Chiappetta DA, et al. Nanotechnology in tuberculosis: state of the art and the challenges ahead. Pharm Res. 2018;35:213.

    Article  Google Scholar 

  7. Sarmento B, Ribeiro A, Veiga F, Sampaio P, Neufeld R, Ferreira D. Alginate/chitosan nanoparticles are effective for Oral insulin delivery. Pharm Res. 2007;24(12):2198–206.

    Article  CAS  Google Scholar 

  8. Kusonwiriyawong C, Lipipun V, Vardhanabhuti N, Zhang Q, Ritthidej GC. Spray-dried chitosan microparticles for cellular delivery of an antigenic protein: Physico-chemical properties and cellular uptake by dendritic cells and macrophages. Pharm Res. 2013;30:1677–97.

    Article  CAS  Google Scholar 

  9. Leung M, Forrest FM, Florczyk SJ, Veiseh O, Wu J, Park JO, et al. Chitosan-alginate scaffold culture system for hepatocellular carcinoma increases malignancy and drug resistance. Pharm Res. 2010;27:1939–48.

    Article  CAS  Google Scholar 

  10. Liu Q, Zheng X, Zhang C, Shao X, Zhang X, Zhang Q, et al. Antigen-conjugated N-trimethylaminoethylmethacrylate chitosan nanoparticles induce strong immune responses after nasal administration. Pharm Res. 2015;32:22–36.

    Article  Google Scholar 

  11. Grisin T, Bories C, Bombardi M, Loiseau PM, Rouffiac V, Solgadi A, et al. Supramolecular ChitosanMicro-platelets synergistically enhance anti-Candida albicans activity of amphotericin B using an immunocompetent murine model. Pharm Res. 2017;34:1067–82.

    Article  CAS  Google Scholar 

  12. Morsy R, Ali SS, El-Shetehy M. Development of hydroxyapatite-chitosan gel sunscreen combating clinical multidrug-resistant bacteria. J Mol Struct. 2017;1143:251–8.

    Article  CAS  Google Scholar 

  13. Mahmoudzadeh M, Fassihi A, Dorkoosh F, Heshmatnejad R, Mahnam K, Sabzyan H, et al. Elucidation of molecular mechanisms behind the self-assembly behavior of chitosan amphiphilic derivatives through experiment and molecular modeling. Pharm Res. 2015;32:3899–915.

    Article  CAS  Google Scholar 

  14. Casettari L, Castagnino E, Stolnik S, Lewis A, Howdle SM, Illum L. Surface characterisation of bioadhesive PLGA/chitosan microparticles produced by supercritical fluid technology. Pharm Res. 2011;28:1668–82.

    Article  CAS  Google Scholar 

  15. Tamer TM, Hassan MA, Omer AM, Baset WMA, Hassan ME, El-Shafeey ME, et al. Synthesis, characterization and antimicrobial evaluation of two aromatic chitosan Schiff base derivatives. Process Biochem. 2016;51:1721–30.

    Article  CAS  Google Scholar 

  16. Malik S, Nema B. Antimicrobial activities of schiff bases: a review. Int J Theor Appl Phys. 2016;8:28–30.

    CAS  Google Scholar 

  17. Beg Ahmad AZ. Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi drug resistant human pathogens. J Ethnopharmacol. 2001;74:113–23.

    Article  Google Scholar 

  18. Saranya TS, Rajan VK, Biswas R, Jayakumar R, Sathianarayanan S. Synthesis, characterization and biomedical applications of curcumin conjugated chitosan microspheres. Int J Biol Macromol. 2018;110:227–33.

    Article  CAS  Google Scholar 

  19. Tan W, Zhang J, Zhao X, Dong F, Li Q, Guo Z. Synthesis and antioxidant action of chitosan derivatives with amino-containing groups via azide-alkyne click reaction and N-methylation. Carbohydr Polym. 2018;199:583–92.

    Article  CAS  Google Scholar 

  20. Zhang J, Tan W, Wang G, Yin X, Li Q, Dong F, et al. Synthesis, characterization, and antioxidant activity of N,N,N,-trimethyl chitosan salts. Int J Biol Macromol. 2018;118:9–14.

    Article  Google Scholar 

  21. Upadhyay J, Kumar A, Gogoi B, Buragohain AK. Antibacterial and hemolysis activity of polypyrrole nanotubes decorated with silver nanoparticles by an in-situ reduction process. Mater Sci Eng C. 2015;54:8–13.

    Article  CAS  Google Scholar 

  22. Liu M, Min L, Zhu C, Rao Z, Liu L, Xu W, et al. Preparation, characterization and antioxidant activity of silk peptides grafted carboxymethyl chitosan. Int J Biol Macromol. 2017;104:732–8.

    Article  CAS  Google Scholar 

  23. Regiel-Futyra A, JM D˛b, Mazuryk O, S´ p K, Kyzioł A, Pucelik B, et al. Bioinorganic antimicrobial strategies in the resistance era. Coord Chem Rev. 2017;351:76–117.

    Article  CAS  Google Scholar 

  24. Poonguzhali R, Basha SK, Kumari VS. Fabrication of asymmetric nanostarch reinforced chitosan/PVP membrane and its evaluation as an antibacterial patch for in vivo wound healing application. Int J Biol Macromol. 2018;114:204–13.

    Article  CAS  Google Scholar 

  25. Sabaaa MW, Elzanaty AM, Abdel-Gawad OF, Arafa EG. Synthesis, characterization and antimicrobial activity of Schiff bases modified chitosan-graft-poly(acrylonitrile). Int J Biol Macromol. 2018;109:1280–91.

    Article  Google Scholar 

  26. Anush SM, Vishalakshi B, Kalluraya B, Manju N. Synthesis of pyrazole-based Schiff bases of chitosan: evaluation of antimicrobial activity. Int J Biol Macromol. 2018;119:446–52.

    Article  CAS  Google Scholar 

  27. Choi H, Kim KJ, Lee DG. Antifungal activity of the cationic antimicrobial polymer-polyhexamethylene guanidine hydrochloride and its mode of action. Fungal Biol. 2017;121:53–60.

    Article  CAS  Google Scholar 

  28. Campana R, Biondo F, Mastrotto F, Baffone W, Casettari L. Chitosans as new tools against biofilms formation on the surface of silicone urinary catheters. Int J Biol Macromol. 2018;118:2193–200.

    Article  CAS  Google Scholar 

  29. Perinelli DR, Fagioli L, Campana R, Lam JKW, Baffone W, Palmieri GF, et al. Chitosan-based nanosystems and their exploited antimicrobial activity. Eur J Pharm Sci. 2018;117:8–20.

    Article  CAS  Google Scholar 

  30. Süntar I, Akkol EK, Nahar L, Sarker SD. Wound healing and antioxidant properties: do they coexist in plants? Free Radic Antioxid. 2012;2(2):1–7.

    Article  Google Scholar 

  31. Soni B, Visavadiya NP, Madamwar D. Attenuation of diabetic complications by C- phycoerythrin in rats: antioxidant activity of C-phycoerythrin including copper induced lipoprotein and serum oxidation. Br J Nutr. 2009;102(1):102–9.

    Article  CAS  Google Scholar 

  32. Divya K, Vijayan S, Jisha MS. Antifungal, antioxidant and cytotoxic activities of chitosan nanoparticles and its use as an edible coating on vegetables. Int J Biol Macromol. 2018;114:572–7.

    Article  CAS  Google Scholar 

  33. Liu CH, Wang CH, Xu ZI, Wang Y. Isolation chemical characterization and antioxidant activities of two polysaccharides from the gel and the skin of aloe barbadensis, miller irrigated with sea water. Process Biochem. 2007;42:961–70.

    Article  CAS  Google Scholar 

  34. Sadique J, Al-Rqodah WA, Baghhath MF, El-Ginay RR. The bioactivity of certain medicinal plants on the stabilization of the RBC system. Fitoterapia. 1989;66:525–32.

    Google Scholar 

  35. Anosike CA, Igboegwu ON, Nwodo OFC. Antioxidant properties and membrane stabilization effects of methanol extract of Mucuna pruriens leaves on normal and sickle erythrocytes. J Tradit Complement Med. 2018. https://doi.org/10.1016/j.jtcme.2017.08.002.

  36. Govindappa M, Hemashekhar B, Arthikala MK, Rai VR, Ramachandra YL. Characterization, antibacterial, antioxidant, antidiabetic, anti-inflammatory and antityrosinase activity of green synthesized silver nanoparticles using Calophyllum tomentosum leaves extract. Results in Physics. 2018;9:400–8.

    Article  Google Scholar 

  37. Brockmann L, Giannou AD, Gagliani N, Huber S. Regulation of TH17 cells and associated cytokines in wound healing, tissue regeneration, and carcinogenesis. Int J Mol Sci. 2017;18:1033.

    Article  Google Scholar 

  38. Yadav E, Singh D, Yadav P, Verma A. Antioxidant and anti-inflammatory properties of Prosopis cineraria based phenolic rich ointment in wound healing. Biomed Pharmacother. 2018;108:1572–83.

    Article  CAS  Google Scholar 

  39. Luo P, Nie M, Wen H, Xu W, Fan L, Cao Q. Preparation and characterization of carboxymethyl chitosan sulfate/oxidized konjac glucomannan hydrogels. Int J Biol Macromol. 2018;113:1024–31.

    Article  CAS  Google Scholar 

  40. Mao S, Shuai X, Unger F, Wittmar M, Xie X, Kissel T. Synthesis, characterization and cytotoxicity of poly(ethylene glycol)-graft-trimethyl chitosan block copolymers. Biomaterials. 2005;26(32):6343–56.

    Article  CAS  Google Scholar 

  41. Sajomsang W, Gonil P, Ruktanonchai UR, Petchsangsai M, Opanasopit P, Puttipipatkhachorn S. Effects of molecular weight and pyridinium moiety on water-soluble chitosan derivatives for mediated gene delivery. Carbohydr Polym. 2013;91(2):508–17.

    Article  CAS  Google Scholar 

  42. Kenawy E, Ali SS, Al-Etewy M, Sun JZ, Wu J, El-Zawawy N. Synthesis, characterization and biomedical applications of a novel Schiff base on methyl acrylate-functionalized chitosan bearing p-nitrobenzaldehyde groups. Int J Biol Macromol. 2018. https://doi.org/10.1016/j.ijbiomac.2018.11.005.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sameh S. Ali or Jianzhong Sun.

Electronic supplementary material

ESM 1

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S.S., Kenawy, ER., Sonbol, F.I. et al. Pharmaceutical Potential of a Novel Chitosan Derivative Schiff Base with Special Reference to Antibacterial, Anti-Biofilm, Antioxidant, Anti-Inflammatory, Hemocompatibility and Cytotoxic Activities. Pharm Res 36, 5 (2019). https://doi.org/10.1007/s11095-018-2535-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2535-x

Key Words

Navigation