Skip to main content
Log in

Double or Simple Emulsion Process to Encapsulate Hydrophilic Oxytocin Peptide in PLA-PEG Nanoparticles

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Oral drug delivery using NPs is a current strategy for poorly absorbed molecules. It offers significant improvement in terms of bioavailability. However, the encapsulation of proteins and peptides in polymeric NPs is a challenge. Firstly, the present study focused on the double emulsion process in order to encapsulate the OXY peptide. Then the technique was challenged by a one-step simplified process, the simple emulsion.

Methods

In order to study the influence of formulation and process parameters, factorial experimental designs were carried on. The responses observed were the NP size (<200 nm in order to penetrate the intestinal mucus layer), the suspension stability (ZP < |30| mV) and the OXY loading.

Results

It was thus found that the amount and the nature of surfactant, the ratio between the phases, the amount of PLA-PEG polymer and OXY, the presence of a viscosifying agent, and the duration of the sonication could significantly influence the responses. Finally, OXY-loaded NPs from both processes were obtained with NP size of 195 and 226 nm and OXY loading of 4 and 3.3% for double and simple emulsions, respectively.

Conclusion

The two processes appeared to be suitable for OXY encapsulation and comparable in term of NP size, peptide drug load and release obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACN:

Acetonitrile

ATFA:

Trifluoroacetic acid

BSA:

Bovine serum albumin

DCM:

Dichloromethane

DL:

Drug load

DLS:

Dynamic light scattering

DMSO :

Dimethyl sulfoxyde

EtAc:

Ethyl acetate

EtOH:

Ethanol

HBSS:

Hanks buffer saline solution

HEC:

Hydroxy ethyl cellulose

HLB:

Hydrophilic-lipophilic balance

HPLC:

High pressure liquid chromatography

MES:

2-(N-morpholino)ethanesulfonic acid

NME:

New molecular entity

NP:

Nanoparticle

O:

Organic phase

OXY:

Oxytocin

PDLG:

DL-lactide/glycolide copolymer

PEG:

Poly-ethylene glycol

PLA:

Polylactic acid

PLGA:

Poly-D-L-lactide-co-glycolide

PVA:

Poly(vinyl alcohol)

W:

Aqueous phase

WE:

External aqueous phase

WI:

Internal aqueous phase

ZP:

Zeta potential

References

  1. Reis CP, Neufeld RJ, Ribeiro AJ. VeigaF. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine. 2006;2:8–21.

    Article  CAS  PubMed  Google Scholar 

  2. Mahapatro A, Singh DK. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. Journal of Nanobiotechnology. 2011;9:55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Damgé C, Michel C, Aprahamian M, Couvreur P, Devissaguet JP. Nanocapsules as carriers for oral peptide delivery. J Control Release. 1990;13:233–9.

    Article  Google Scholar 

  4. Iqbal M, Zafar N, Fessi H, Elaissari A. Double emulsion solvent evaporation techniques used for drug encapsulation. Int J Pharm. 2015;496:173–90.

    Article  CAS  PubMed  Google Scholar 

  5. Vauthier C, Bouchemal K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res. 2009;26:1025–58.

    Article  CAS  PubMed  Google Scholar 

  6. Wang H, Zhao Y, Wu Y, Hu YL, Nan K, Nie G, et al. Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomaterials. 2011;32:8281–90.

    Article  CAS  PubMed  Google Scholar 

  7. Mattos AC, Altmeyer C, Tominaga TT, Khalil NM, Mainardes RM. Polymeric nanoparticles for oral delivery of 5-fluorouracil: formulation optimization, cytotoxicity assay and pre-clinical pharmacokinetics study. Eur J Pharm Sci. 2016;84:83–91.

    Article  PubMed  Google Scholar 

  8. Danafar H, Rostamizadeh K, Davaran S, Hamidi M. Drug-conjugated PLA-PEG-PLA copolymers: a novel approach for controlled delivery of hydrophilic drugs by micelle formation. Pharm Dev Technol. 2017;22(8):947–57.

    Article  CAS  PubMed  Google Scholar 

  9. Tomar L, Tyagi C, Kumar M, Kumar P, Singh H, Choonara YE, et al. In vivo evaluation of a conjugated poly(lactide-ethylene glycol) nanoparticle depot formulation for prolonged insulin delivery in the diabetic rabbit model. Int J Nanomedicine. 2013;8:505–20.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jain A, Jain SK. L-valine appended PLGA nanoparticles for oral insulin delivery. Acta Diabetol. 2015;52:663–76.

    Article  CAS  PubMed  Google Scholar 

  11. Pirooznia N, Hasannia S, Lotfi AS, Ghanei M. Encapsulation of alpha-1 antitrypsin in PLGA nanoparticles: in vitro characterization as an effective aerosol formulation in pulmonary diseases. J Nanobiotechnology. 2012;10:20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Essa S, Rabanel JM, Hildgen P. Characterization of rhodamine loaded PEG-g-PLA nanoparticles (NPs): effect of poly(ethylene glycol) grafting density. Int J Pharm. 2011;411:178–87.

    Article  CAS  PubMed  Google Scholar 

  13. Ji S, Lu J, Liu Z, Srivastava D, Song A, Liu Y, et al. Dynamic encapsulation of hydrophilic nisin in hydrophobic poly (lactic acid) particles with controlled morphology by a single emulsion process. J Colloid Interface Sci. 2014;423:85–93.

    Article  CAS  PubMed  Google Scholar 

  14. Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev. 2012;64:557–70.

    Article  CAS  PubMed  Google Scholar 

  15. Hans ML, Lowman AM. Biodegradable nanoparticles for drug delivery and targeting. Curr Opinion Solid State Mater Sci. 2002;6:319–27.

    Article  CAS  Google Scholar 

  16. Budhian A, Siegel SJ, Winey KI. Haloperidol-loaded PLGA nanoparticles: systematic study of particle size and drug content. Int J Pharm. 2007;336:367–75.

    Article  CAS  PubMed  Google Scholar 

  17. Görner T, Gref R, Michenot D, Sommer F, Tran MN, Dellacherie E. Lidocaine-loaded biodegradable nanospheres. I. Optimization of the drug incorporation into the polymer matrix. J Control Release. 1999;57:259–68.

    Article  PubMed  Google Scholar 

  18. Pridgen EM, Alexis F, Kuo TT, Levy-Nissenbaum E, Karnik R, Blumberg RS, et al. Transepithelial transport of fc-targeted nanoparticles by the neonatal fc receptor for oral delivery. Sci Transl Med. 2013;5:213ra167.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sharma N, Madan P, Lin S. Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: a co-surfactant study. Asian Journal of Pharmaceutical Sciences. 2016;11:404–16.

    Article  Google Scholar 

  20. Zweers ML, Grijpma DW, Engbers GH, Feijen J. The preparation of monodisperse biodegradable polyester nanoparticles with a controlled size. J Biomed Mater Res B Appl Biomater. 2003;66:559–66.

    Article  PubMed  Google Scholar 

  21. Box GEP, Hunter WG, Hunter JS. Statistics for experimenters: an introduction to design, data analysis, and model building. Hoboken: Wiley; 1978.

    Google Scholar 

  22. Julienne MC, Alonso MJ, Gomez Amoza JL, Benoit JP. Preparation of poly(D,L-lactide/glycolide) nanoparticles of controlled particle size distribution: application of experimental designs. Drug DevIndPharm. 1992;18:1063–77.

    CAS  Google Scholar 

  23. Lewis GA, Mathieu D, Phan-Tan-Luu R. Pharmaceutical experimental design. New York: Marcel Dekker, Inc.; 1999. p. 186-191

    Google Scholar 

  24. Walls ZF, Gupta SV, Amidon GL, Lee KD. Synthesis and characterization of valyloxy methoxy luciferin for the detection of valacyclovirase and peptide transporter. Bioorg Med Chem Lett. 2014;24:4781–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bilati U, Allemann E, Doelker E. Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur J Pharm Sci. 2005;24:67–75.

    Article  CAS  PubMed  Google Scholar 

  26. Gourdon B, Chemin C, Moreau A, Arnauld T, Baumy P, Cisternino S, et al. Functionalized PLA-PEG nanoparticles targeting intestinal transporter PepT1 for oral delivery of acyclovir. Int J Pharm. 2017;529:357–70.

    Article  CAS  PubMed  Google Scholar 

  27. Cheng J, Teply BA, Sherifi I, Sung J, Luther G, Gu FX, et al. Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials. 2007;28:869–76.

    Article  CAS  PubMed  Google Scholar 

  28. Budhian A, Siegel SJ, Winey KI. Production of haloperidol-loaded PLGA nanoparticles for extended controlled drug release of haloperidol. J Microencapsul. 2005;22:773–85.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

The author reports no conflicts of interest in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Declèves.

Electronic supplementary material

Fig. S1

Apparent viscosity (Pas) of the viscofying agents HEC at 1% and 2.5% (w/v) and PEG 400 at (3:2) and (2:3) ratios with water, represented as function of shearing speed (1/s), in [water + poloxamer P188 1% (w/v)] aqueous phase (JPEG 83 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gourdon, B., Declèves, X., Péan, JM. et al. Double or Simple Emulsion Process to Encapsulate Hydrophilic Oxytocin Peptide in PLA-PEG Nanoparticles. Pharm Res 35, 82 (2018). https://doi.org/10.1007/s11095-018-2358-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2358-9

KEY WORDS

Navigation