Skip to main content

Advertisement

Log in

Effect of Microenvironmental pH Modulation on the Dissolution Rate and Oral Absorption of the Salt of a Weak Acid – Case Study of GDC-0810

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this work is to investigate the effect of microenvironmental pH modulation on the in vitro dissolution rate and oral absorption of GDC-0810, an oral anti-cancer drug, in human.

Methods

The pH-solubility profile of GDC-0810 free acid and pHmax of its N-Methyl-D-glucamine (NMG) salt were determined. Precipitation studies were conducted for GDC-0810 NMG salt at different pH values. GDC-0810 200-mg dose NMG salt tablet formulations containing different levels of sodium bicarbonate as the pH modifier were tested for dissolution under the dual pH-dilution scheme. Three tablet formulations were evaluated in human as a part of a relative bioavailability study. A 200-mg dose of GDC-0810 was administered QD with low fat food.

Results

Intrinsic solubility of GDC-0810 free acid was found to be extremely low. The pHmax of the NMG salt suggested a strong tendency for form conversion to the free acid under GI conditions. In vitro dissolution profiles showed that the dissolution rate and extent of GDC-0810 increased with increasing the level of sodium bicarbonate in the formulation. The human PK data showed a similar trend for the geometric mean of Cmax and AUC0-t for formulations containing 5%, 10%, and 15% sodium bicarbonate, but the difference is not statistically significant.

Conclusion

Incorporation of a basic pH modifier, sodium bicarbonate, in GDC-0810 NMG salt tablet formulations enhanced in vitro dissolution rate of GDC-0810 via microenvironmental pH modulation. The human PK data showed no statistically significant difference in drug exposure from tablets containing 5%, 10%, and 15% sodium bicarbonate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

API:

Active pharmaceutical ingredient

AUC:

Area under the curve

FaSSIF:

Fasted-state simulated intestinal fluid

HPLC:

High performance liquid chromatography

IDR:

Intrinsic dissolution rate

NMG:

N-Methyl-D-glucamine

PXRD:

Powder x-ray diffraction

SGF:

Simulated gastric fluid

ssNMR:

Solid-state nuclear magnetic resonance

References

  1. Giliyar C, Fikstad DT, Tyavanagimatt S. Challenges and opportunities in oral delivery of poorly water-soluble drugs. Drug Deliv Technol. 2006;6:57–63.

    CAS  Google Scholar 

  2. Taylor LS, Zhang GGZ. Physical chemistry of supersaturated solutions and implications for oral absorption. Adv Drug Deliv Rev. 2016;101:122–42.

    Article  CAS  PubMed  Google Scholar 

  3. Serajuddin ATM. Salt formation to improve drug solubility. Adv Drug Deliv Rev. 2007;59:603–16.

    Article  CAS  PubMed  Google Scholar 

  4. Higuchi WI, Mir NA, Parker AP, Hamlin WE. Dissolution kinetics of a weak acid, 1,1-hexamethylene p-tolylsulfonylsemicarbazide, and its sodium salt. J Pharm Sci. 1965;54:8–11.

    Article  CAS  PubMed  Google Scholar 

  5. Serajuddin ATM, Jarowski CI. Effect of diffusion layer pH and solubility on the dissolution rate of pharmaceutical bases and their hydrochloride salts I: phenazopyridine. J Pharm Sci. 1985;74:142–7.

    Article  CAS  PubMed  Google Scholar 

  6. Serajuddin ATM, Jarowski CI. Effect of diffusion layer pH and solubility on the dissolution rate of pharmaceutical acids and their sodium salts II: salicylic acid, theophylline, and benzoic acid. J Pharm Sci. 1985;74:148–54.

    Article  CAS  PubMed  Google Scholar 

  7. Doherty C, York P. Microenvironmental pH control of drug dissolution. Int J Pharm. 1989;50:223–32.

    Article  CAS  Google Scholar 

  8. Badawy SIF, Gray D, Zhao F, Sun D, Schuster A, Hussain MA. Formulation of solid dosage forms to overcome gastric pH interaction of the factor Xa inhibitor, BMS-561389. Pharm Res. 2006;23:989–96.

    Article  CAS  PubMed  Google Scholar 

  9. Tatavarti AS, Hoag SW. Microenvironmental pH modulation based release enhancement of a weakly basic drug from hydrophilic matrices. J Pharm Sci. 2006;95:1459–68.

    Article  CAS  PubMed  Google Scholar 

  10. Bi M, Kyad A, Kiang YH, Alvarez-Nunez F, Alvarez F. Enhancing and sustaining AMG 009 dissolution from a matrix tablet via microenvironmental pH modulation and supersaturation. AAPS PharmSciTech. 2011;12(4):1157–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rao VM, Engh K, Qiu Y. Design of pH-independent controlled release matrix tablets for acidic drugs. Int J Pharm. 2003;252:81–6.

    Article  CAS  PubMed  Google Scholar 

  12. Mahjour M, Kesisoglou F, Cruanes M, Xu W, Zhang D, Maguire TJ, et al. Effect of added alkalizer and surfactant on dissolution and absorption of the potassium salt of a weakly basic poorly water-soluble drug. J Pharm Sci. 2014;103(6):1811–8.

    Article  CAS  PubMed  Google Scholar 

  13. Menning M, Dalziel S. Fumaric acid microenvironment tablet formulation and process development for crystalline cenicriviroc mesylate, a BCS IV compound. Mol Pharm. 2013;10:4005–15.

    Article  CAS  PubMed  Google Scholar 

  14. Lai A, Kahraman M, Govek S, Nagasawa J, Bonnefous C, Julien J, et al. Identification of GDC-0810 (ARN-810), an orally bioavailable selective estrogen receptor degrader (SERD) that demonstrates robust activity in tamoxifen-resistant breast cancer xenografts. J Med Chem. 2015;58(12):4888–904.

    Article  CAS  PubMed  Google Scholar 

  15. Wood JH, Syarto JE, Letterman H. Improved holder for intrinsic dissolution rate studies. J Pharm Sci. 1965;54(7):1068.

    Article  CAS  PubMed  Google Scholar 

  16. Jantratid E, Janssen N, Reppas C, Dressman JB. Dissolution media simulating conditions in the proximal human gastrointestinal tract: an update. Pharm Res. 2008;25(7):1663–76.

    Article  CAS  PubMed  Google Scholar 

  17. Gao Y, Carr RA, Spence JK, Wang WW, Turner TM, Lipari JM, et al. A pH-dilution method for estimation of biorelevant drug solubility along the gastrointestinal tract: application to physiologically based pharmacokinetic modeling. Mol Pharm. 2010;7(5):1516–26.

    Article  CAS  PubMed  Google Scholar 

  18. Li Y, Gao P, Shi Y, Zhang GG, Gao Y, Wu J. Formulations of pyrimidinedione derivative compounds. US14058071. 2013.

  19. Ran Y, Yalkowsky SH. Prediction of drug solubility by the general solubility equation (GSE). J Chem Inf Comput Sci. 2001;41:354–7.

    Article  CAS  PubMed  Google Scholar 

  20. Van Den Abeele J, Brouwers J, Mattheus R, Tack J, Augustijins P. Gastrointestinal behavior of weakly acidic BCS class II drugs in man - case study of diclofenac potassium. J Pharm Sci. 2016;105(2):687–96.

    Article  Google Scholar 

  21. Petrakis O, Vertzoni M, Angelou A, Kesisoglou F, Bentz K, Goumas K, et al. Identification of key factors affecting the oral absorption of salts of lipophilic weak acids: a case example. J Pharm Pharmacol. 2015;67(1):56–67.

    Article  CAS  PubMed  Google Scholar 

  22. Lipinski CA, Lombardo F, Dominy BW, Feeny PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46:3–26.

    Article  CAS  PubMed  Google Scholar 

  23. Dill WA, Kazenko A, Wolf LM, Glazko AJ. Studies on 5,5′- diphenylhydantoin (Dilantin) in animals and man. J Pharmacol Exp Ther. 1956;118:270–9.

    CAS  PubMed  Google Scholar 

  24. Serajuddin ATM, Jarowski CI. Influence of pH on release of phenytoin sodium from slow-release dosage forms. J Pharm Sci. 1993;82:306–10.

    Article  CAS  PubMed  Google Scholar 

  25. ATM S, Sheen PC, Mufson D, Bernstein DF, Augustine MA. Preformulation study of a poorly water-soluble drug, α-pentyl-3-(2-quinolinylmethoxy)benzenemethanol: selection of the base form dosage form development. J Pharm Sci. 1986;75:492–6.

    Article  Google Scholar 

  26. Bogardus JB, Blackwood RK. Solubility of doxycycline in aqueous solution. J Pharm Sci. 1979;68:188–94.

    Article  CAS  PubMed  Google Scholar 

  27. Li S, Wong SM, Sethia S, Almoazen H, Joshi YM, Serajuddin ATM. Investigation of solubility and dissolution of a free base and two different salt forms as a function of pH. Pharm Res. 2005;22:628–35.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

The authors would like to thank Dr. Po-Chang Chiang, Genentech Inc., for valuable scientific discussion. We would like to acknowledge Dr. Ching-Wei Chang, Genentech Inc., for assistance in statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Helen Hou or Karthik Nagapudi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, H.H., Jia, W., Liu, L. et al. Effect of Microenvironmental pH Modulation on the Dissolution Rate and Oral Absorption of the Salt of a Weak Acid – Case Study of GDC-0810. Pharm Res 35, 37 (2018). https://doi.org/10.1007/s11095-018-2347-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2347-z

KEY WORDS

Navigation