Skip to main content

Advertisement

Log in

Investigation Into the Effects of Tenilsetam on Markers of Neuroinflammation in GFAP-IL6 Mice

  • Research Paper
  • Theme: Drug Discovery, Development and Delivery in Alzheimer’s Disease
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To test the short- and long-term effects of Tenilsetam on chronic neuroinflammation in the GFAP-IL6 mouse.

Methods

From 3 months of age, GFAP-IL6 mice were divided into 2 groups and fed with Tenilsetam enriched food pellets or control food pellets, respectively, for either 5 or 15 months. Total numbers of Iba-1+ microglia, TSPO+ cells were determined using an unbiased stereological method. Levels of methylglyoxal and TNF-α in the cerebellar homogenate were tested using HPLC and ELISA, respectively.

Results

Tenilsetam decreased the total number of Iba-1+ microglia in both the cerebellum and the hippocampus of GFAP-IL6 mice at 8 months and in the cerebellum at 18 months. In the cerebellum, it decreased the density of microglia in GFAP-IL6 mice to a similar level after 5 and 15 months’ feeding. Tenilsetam prevented the volume loss of the cerebellum at 8 months. It also significantly decreased TNF-α in the cerebellum of GFAP-IL6 mice to a similar level of WT mice after 15 months of feeding.

Conclusion

Tenilsetam has anti-inflammatory effects evidenced by the decreased number of microglia in both the cerebellum and hippocampus, and decreased TNF-α levels in the GFAP-IL6 Tenilsetam fed animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ABC:

Avidin/biotin complex

AD:

Alzheimer’s disease

AGE:

Advanced glycation endproduct

ANOVA:

Analysis of variance

AP1:

Activator protein 1

ATP:

Adenosine triphosphate

CLU:

Clusterin

CNS:

Central nervous system

COXs:

Cyclooxygenases

CR1:

Complement receptor 1

DAB:

3,3′-diaminobenzidine

DTH:

Delayed-type hypersensitivity

FJT:

Favourability judgement task

GFAP:

Glial fibrillary acidic protein

GFAP-L6:

Glial fibrillary acidic protein-interleukin 6

H2O2 :

Hydrogen peroxide

Iba-1:

Ionized calcium-binding adapter molecule 1

IL1:

Interleukin 1

IL1β:

Interleukin 1β

IL6:

Interleukin 6

LPS:

Lipopolysaccharide

MGO:

Methylglyoxal

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NSAIDs:

Non-steroidal anti-inflammatory drugs

PBS:

Phosphate-buffered saline

RAGE:

Receptor of advanced glycation endproduct

SD:

Standard deviation

TNF- α:

Tumor necrosis factor α

TREM2:

Triggering receptor expressed on myeloid cells 2

References

  1. Mrak RE, Griffin WS. Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging. 2005;26(3):349–54.

    Article  CAS  PubMed  Google Scholar 

  2. Retz W, Gsell W, Münch G, Rosler M, Riederer P. Free radicals in Alzheimer's disease. J Neural Transm Suppl. 1998;54:221–36.

    Article  CAS  PubMed  Google Scholar 

  3. Ahmed N, Ahmed U, Thornalley PJ, Hager K, Fleischer G, Münch G. Protein glycation, oxidation and nitration adduct residues and free adducts of cerebrospinal fluid in Alzheimer's disease and link to cognitive impairment. J Neurochem. 2005;92(2):255–63.

    Article  CAS  PubMed  Google Scholar 

  4. Münch G, Thome J, Foley P, Schinzel R, Riederer P. Advanced glycation endproducts in ageing and Alzheimer's disease. Brain Res Brain Res Rev. 1997;23(1–2):134–43.

    Article  PubMed  Google Scholar 

  5. Fuller S, Münch G, Steele M. Activated astrocytes: a therapeutic target in Alzheimer's disease? Expert Rev Neurother. 2009;9(11):1585–94.

    Article  CAS  PubMed  Google Scholar 

  6. Fuller S, Steele M, Münch G. Activated astroglia during chronic inflammation in Alzheimer's disease--do they neglect their neurosupportive roles? Mutat Res. 2010;690(1–2):40–9.

    Article  CAS  PubMed  Google Scholar 

  7. Patel A, Rees SD, Kelly MA, Bain SC, Barnett AH, Prasher A, et al. Genetic variants conferring susceptibility to Alzheimer's disease in the general population; do they also predispose to dementia in Down's syndrome. BMC Res Notes. 2014;7(1):42.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Shaftel SS, Carlson TJ, Olschowka JA, Kyrkanides S, Matousek SB, O'Banion MK. Chronic interleukin-1beta expression in mouse brain leads to leukocyte infiltration and neutrophil-independent blood brain barrier permeability without overt neurodegeneration. J Neurosci Off J Soc Neurosci. 2007;27(35):9301–9.

    Article  CAS  Google Scholar 

  9. Campbell IL, Abraham CR, Masliah E, Kemper P, Inglis JD, Oldstone MB, et al. Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6. Proc Natl Acad Sci U S A. 1993;90(21):10061–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Carrasco J, Giralt M, Penkowa M, Stalder AK, Campbell IL, Hidalgo J. Metallothioneins are upregulated in symptomatic mice with astrocyte-targeted expression of tumor necrosis factor-alpha. Exp Neurol. 2000;163(1):46–54.

    Article  CAS  PubMed  Google Scholar 

  11. Heyser CJ, Masliah E, Samimi A, Campbell IL, Gold LH. Progressive decline in avoidance learning paralleled by inflammatory neurodegeneration in transgenic mice expressing interleukin 6 in the brain. Proc Natl Acad Sci U S A. 1997;94(4):1500–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang XM, Wu TX, Hamza M, Ramsay ES, Wahl SM, Dionne RA. Rofecoxib modulates multiple gene expression pathways in a clinical model of acute inflammatory pain. Pain. 2007;128(1–2):136–47.

    Article  CAS  PubMed  Google Scholar 

  13. Bour AM, Westendorp RG, Laterveer JC, Bollen EL, Remarque EJ. Interaction of indomethacin with cytokine production in whole blood. Potential mechanism for a brain-protective effect. Exp Gerontol. 2000;35(8):1017–24.

    Article  CAS  PubMed  Google Scholar 

  14. Strassburger M, Braun H, Reymann KG. Anti-inflammatory treatment with the p38 mitogen-activated protein kinase inhibitor SB239063 is neuroprotective, decreases the number of activated microglia and facilitates neurogenesis in oxygen-glucose-deprived hippocampal slice cultures. Eur J Pharmacol. 2008;592(1–3):55–61.

    Article  CAS  PubMed  Google Scholar 

  15. Sun YX, Dai DK, Liu R, Wang T, Luo CL, Bao HJ, et al. Therapeutic effect of SN50, an inhibitor of nuclear factor-kappaB, in treatment of TBI in mice. Neurol Sci. 2013;34(3):345–55.

    Article  CAS  PubMed  Google Scholar 

  16. Maczurek A, Hager K, Kenklies M, Sharman M, Martins R, Engel J, et al. Lipoic acid as an anti-inflammatory and neuroprotective treatment for Alzheimer's disease. Adv Drug Deliv Rev. 2008;60(13–14):1463–70.

    Article  CAS  PubMed  Google Scholar 

  17. Steele ML, Fuller S, Patel M, Kersaitis C, Ooi L, Münch G. Effect of Nrf2 activators on release of glutathione, cysteinylglycine and homocysteine by human U373 astroglial cells. Redox Biol. 2013;1:441–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Apetz N, Münch G, Govindaraghavan S, Gyengesi E. Natural compounds and plant extracts as therapeutics against chronic inflammation in Alzheimer's disease--a translational perspective. CNS Neurol Disord Drug Targets. 2014;13(7):1175–91.

    Article  CAS  PubMed  Google Scholar 

  19. Venigalla M, Gyengesi E, Münch G. Curcumin and Apigenin - novel and promising therapeutics against chronic neuroinflammation in Alzheimer's disease. Neural Regen Res. 2015;10(8):1181–5.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ullah F, Liang A, Rangel A, Gyengesi E, Niedermayer G, Munch G. High bioavailability curcumin: an anti-inflammatory and neurosupportive bioactive nutrient for neurodegenerative diseases characterized by chronic neuroinflammation. Arch Toxicol. 2017;91(4):1623–34.

    Article  CAS  PubMed  Google Scholar 

  21. Steiner N, Balez R, Karunaweera N, Lind JM, Munch G, Ooi L. Neuroprotection of Neuro2a cells and the cytokine suppressive and anti-inflammatory mode of action of resveratrol in activated RAW264.7 macrophages and C8-B4 microglia. Neurochem Int. 2016;95:46–54.

    Article  CAS  PubMed  Google Scholar 

  22. Venigalla M, Sonego S, Gyengesi E, Sharman MJ, Münch G. Novel promising therapeutics against chronic neuroinflammation and neurodegeneration in Alzheimer's disease. Neurochem Int. 2016;95:63–74.

    Article  CAS  PubMed  Google Scholar 

  23. Raju R, Gunawardena D, Ahktar MA, Low M, Reddell P, Munch G. Anti-Inflammatory Chemical Profiling of the Australian Rainforest Tree Alphitonia petriei (Rhamnaceae). Molecules. 2016;21(11). https://doi.org/10.3390/molecules21111521.

  24. Akhtar MA, Raju R, Beattie KD, Bodkin F, Munch G. Medicinal Plants of the Australian Aboriginal Dharawal People Exhibiting Anti-Inflammatory Activity. Evid Based Complement Alternat Med. 2016;2016:2935403.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ihl R, Perisic I, Maurer K, Dierks T. Effects of 3 months treatment with tenilsetam in patients suffering from dementia of Alzheimer type (DAT). J Neural Transm. 1989;1:84–5.

    Article  Google Scholar 

  26. Saletu B, Semlitsch HV, Anderer P, Resch F, Presslich O, Schuster P. Psychophysiological research in psychiatry and neuropsychopharmacology. II. The investigation of antihypoxidotic/nootropic drugs (tenilsetam and co-dergocrine-mesylate) in elderlies with the Viennese Psychophysiological Test-System (VPTS). Methods Find Exp Clin Pharmacol. 1989;11(1):43–55.

    CAS  PubMed  Google Scholar 

  27. Webster J, Urban C, Berbaum K, Loske C, Alpar A, Gartner U, et al. The carbonyl scavengers aminoguanidine and tenilsetam protect against the neurotoxic effects of methylglyoxal. Neurotox Res. 2005;7(1–2):95–101.

    Article  CAS  PubMed  Google Scholar 

  28. Münch G, Mayer S, Michaelis J, Hipkiss AR, Riederer P, Muller R, et al. Influence of advanced glycation end-products and AGE-inhibitors on nucleation-dependent polymerization of beta-amyloid peptide. Biochim Biophys Acta. 1997;1360(1):17–29.

    Article  PubMed  Google Scholar 

  29. Münch G, Taneli Y, Schraven E, Schindler U, Schinzel R, Palm D, et al. The cognition-enhancing drug tenilsetam is an inhibitor of protein crosslinking by advanced glycosylation. J Neural Transm Park Dis Dement Sect. 1994;8(3):193–208.

    Article  PubMed  Google Scholar 

  30. Münch G, Schicktanz D, Behme A, Gerlach M, Riederer P, Palm D, et al. Amino acid specificity of glycation and protein-AGE crosslinking reactivities determined with a dipeptide SPOT library. Nat Biotechnol. 1999;17(10):1006–10.

    Article  PubMed  Google Scholar 

  31. Yan SD, Schmidt AM, Stern D. Alzheimer's disease: inside, outside, upside down. Biochem Soc Symp. 2001;67:15–22.

    Article  CAS  Google Scholar 

  32. Bultmann A, Li Z, Wagner S, Gawaz M, Ungerer M, Langer H, et al. Loss of protease activity of ADAM15 abolishes protective effects on plaque progression in atherosclerosis. Int J Cardiol. 2011;152(3):382–5.

    Article  PubMed  Google Scholar 

  33. Chiang CS, Stalder A, Samimi A, Campbell IL. Reactive gliosis as a consequence of interleukin-6 expression in the brain: studies in transgenic mice. Dev Neurosci. 1994;16(3–4):212–21.

    Article  CAS  PubMed  Google Scholar 

  34. Millington C, Sonego S, Karunaweera N, Rangel A, Aldrich-Wright JR, Campbell IL, et al. Chronic neuroinflammation in Alzheimer's disease: new perspectives on animal models and promising candidate drugs. Biomed Res Int. 2014;2014:309129.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bastide MF, Dovero S, Charron G, Porras G, Gross CE, Fernagut PO, et al. Immediate-early gene expression in structures outside the basal ganglia is associated to l-DOPA-induced dyskinesia. Neurobiol Dis. 2014;62:179–92.

    Article  CAS  PubMed  Google Scholar 

  36. West MJ. Getting started in stereology. Cold Spring Harb Protoc. 2013;2013(4):287–97.

    Article  PubMed  Google Scholar 

  37. McCloy RA, Rogers S, Caldon CE, Lorca T, Castro A, Burgess A. Partial inhibition of Cdk1 in G 2 phase overrides the SAC and decouples mitotic events. Cell Cycle. 2014;13(9):1400–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gunawardena D, Shanmugam K, Low M, Bennett L, Govindaraghavan S, Head R, Ooi L, Münch G. Determination of anti-inflammatory activities of standardised preparations of plant- and mushroom-based foods. Eur J Nutr. 2014;53(1):335–43.

  39. Dhananjayan K, Gunawardena D, Hearn N, Sonntag T, Moran C, Gyengesi E, et al. Activation of Macrophages and Microglia by Interferon-gamma and Lipopolysaccharide Increases Methylglyoxal Production: A New Mechanism in the Development of Vascular Complications and Cognitive Decline in Type 2 Diabetes Mellitus? J Alzheimers Dis. 2017;59(2):467–79.

    Article  CAS  PubMed  Google Scholar 

  40. Espinosa-Mansilla A, Duran-Meras I, Salinas F. High-performance liquid chromatographic-fluorometric determination of glyoxal, methylglyoxal, and diacetyl in urine by prederivatization to pteridinic rings. Anal Biochem. 1998;255(2):263–73.

    Article  CAS  PubMed  Google Scholar 

  41. Cosenza-Nashat M, Zhao ML, Suh HS, Morgan J, Natividad R, Morgello S, et al. Expression of the translocator protein of 18 kDa by microglia, macrophages and astrocytes based on immunohistochemical localization in abnormal human brain. Neuropathol Appl Neurobiol. 2009;35(3):306–28.

    Article  CAS  PubMed  Google Scholar 

  42. Srikanth V, Westcott B, Forbes J, Phan TG, Beare R, Venn A, et al. Methylglyoxal, cognitive function and cerebral atrophy in older people. J Gerontol A Biol Sci Med Sci. 2013;68(1):68–73.

    Article  PubMed  Google Scholar 

  43. Kuhla B, Luth H-J, Haferburg D, Boeck K, Arendt T, MÜNch G. Methylglyoxal, Glyoxal, and Their Detoxification in Alzheimer's Disease. Ann N Y Acad Sci. 2005;1043(1):211–6.

    Article  CAS  PubMed  Google Scholar 

  44. de Arriba SG, Krugel U, Regenthal R, Vissiennon Z, Verdaguer E, Lewerenz A, et al. Carbonyl stress and NMDA receptor activation contribute to methylglyoxal neurotoxicity. Free Radic Biol Med. 2006;40(5):779–90.

    Article  PubMed  Google Scholar 

  45. Münch G, Westcott B, Menini T, Gugliucci A. Advanced glycation endproducts and their pathogenic roles in neurological disorders. Amino Acids. 2012;42(4):1221–36.

    Article  PubMed  Google Scholar 

  46. Kuhla B, Loske C. Garcia De Arriba S, Schinzel R, Huber J, Münch G. Differential effects of "Advanced glycation endproducts" and beta-amyloid peptide on glucose utilization and ATP levels in the neuronal cell line SH-SY5Y. J Neural Transm. 2004;111(3):427–39.

    Article  CAS  PubMed  Google Scholar 

  47. Srikanth V, Maczurek A, Phan T, Steele M, Westcott B, Juskiw D, et al. Advanced glycation endproducts and their receptor RAGE in Alzheimer's disease. Neurobiol Aging. 2011;32(5):763–77.

    Article  CAS  PubMed  Google Scholar 

  48. Maczurek A, Shanmugam K, Münch G. Inflammation and the redox-sensitive AGE-RAGE pathway as a therapeutic target in Alzheimer's disease. Ann N Y Acad Sci. 2008;1126:147–51.

    Article  CAS  PubMed  Google Scholar 

  49. Liu GJ, Middleton RJ, Hatty CR, Kam WW, Chan R, Pham T, et al. The 18 kDa translocator protein, microglia and neuroinflammation. Brain Pathol. 2014;24(6):631–53.

    Article  CAS  PubMed  Google Scholar 

  50. Chen MK, Guilarte TR. Translocator protein 18 kDa (TSPO): molecular sensor of brain injury and repair. Pharmacol Ther. 2008;118(1):1–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Papadopoulos V, Lecanu L, Brown RC, Han Z, Yao ZX. Peripheral-type benzodiazepine receptor in neurosteroid biosynthesis, neuropathology and neurological disorders. Neuroscience. 2006;138(3):749–56.

    Article  CAS  PubMed  Google Scholar 

  52. Ravikumar B, Crawford D, Dellovade T, Savinainen A, Graham D, Liere P, et al. Differential efficacy of the TSPO ligands etifoxine and XBD-173 in two rodent models of Multiple Sclerosis. Neuropharmacology. 2016;108:229–37.

    Article  CAS  PubMed  Google Scholar 

  53. Rabbani N, Thornalley PJ. Measurement of methylglyoxal by stable isotopic dilution analysis LC-MS/MS with corroborative prediction in physiological samples. Nat Protoc. 2014;9(8):1969–79.

    Article  CAS  PubMed  Google Scholar 

  54. Thornalley PJ. Cell activation by glycated proteins. AGE receptors, receptor recognition factors and functional classification of AGEs. Cell Mol Biol (Noisy-le-grand). 1998;44(7):1013–23.

    CAS  Google Scholar 

  55. Xue J, Ray R, Singer D, Bohme D, Burz DS, Rai V, et al. The receptor for advanced glycation end products (RAGE) specifically recognizes methylglyoxal-derived AGEs. Biochemistry. 2014;53(20):3327–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kang R, Loux T, Tang D, Schapiro NE, Vernon P, Livesey KM, et al. The expression of the receptor for advanced glycation endproducts (RAGE) is permissive for early pancreatic neoplasia. Proc Natl Acad Sci U S A. 2012;109(18):7031–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Xie J, Mendez JD, Mendez-Valenzuela V, Aguilar-Hernandez MM. Cellular signalling of the receptor for advanced glycation end products (RAGE). Cell Signal. 2013;25(11):2185–97.

    Article  CAS  PubMed  Google Scholar 

  58. Yin L, Dai Q, Jiang P, Zhu L, Dai H, Yao Z, Liu H, Ma X, Qu L, Jiang J. Manganese exposure facilitates microglial JAK2-STAT3 signaling and consequent secretion of TNF-a and IL-1beta to promote neuronal death. Neurotoxicology. 2017. https://doi.org/10.1016/j.neuro.2017.04.001.

  59. Priller J, Flugel A, Wehner T, Boentert M, Haas CA, Prinz M, et al. Targeting gene-modified hematopoietic cells to the central nervous system: use of green fluorescent protein uncovers microglial engraftment. Nat Med. 2001;7(12):1356–61.

    Article  CAS  PubMed  Google Scholar 

  60. Bierhaus A, Stern DM, Nawroth PP. RAGE in inflammation: a new therapeutic target? Curr Opin Investig Drugs. 2006;7(11):985–91.

    CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The present study is supported by the Research Training Fund of Western Sydney University (to MV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huazheng Liang.

Additional information

Guest Editor: Davide Brambilla

Erika Gyengesi and Huazheng Liang are equal first authors.

Electronic supplementary material

Figure S1

(GIF 35 kb)

High Resolution Image (TIFF 25553 kb)

ESM 1

(XLSX 14 kb)

ESM 2

(XLSX 11 kb)

ESM 3

(XLSX 12 kb)

ESM 4

(XLSX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gyengesi, E., Liang, H., Millington, C. et al. Investigation Into the Effects of Tenilsetam on Markers of Neuroinflammation in GFAP-IL6 Mice. Pharm Res 35, 22 (2018). https://doi.org/10.1007/s11095-017-2326-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-017-2326-9

KEY WORDS

Navigation