Skip to main content

Advertisement

Log in

A Nanocarrier Skin-Targeted Drug Delivery System using an Ascorbic Acid Derivative

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

As trisodium L-ascorbyl 2-phosphate 6-palmitate (APPS), an ascorbic acid derivative, is an amphiphilic substance, it forms micelles in aqueous solutions. Micelles are used as drug carriers and can emulsify drugs that are poorly soluble in water, such as nadifloxacin (NDFX). The purpose of this study was to prepare nanocarriers using APPS to carry NDFX into Yucatan micropig skin.

Methods

After synthesis of the NDFX nanoparticles by using the hydration method, physical evaluations were carried out that included assessments of particle size and zeta potential, encapsulation efficiency, particle structure by transmission electron microscopy, 31P–NMR spectra, and particle stability. Functional evaluations of the nanoparticles included 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays, skin penetration tests, and fluorescence microscopy observations.

Results

The encapsulation efficiency of NDFX in the nanoparticles was approximately 75%. With added magnesium chloride, the nanoparticles remained stably dispersed in aqueous solution for at least 14 days at 25°C under protection from light. In addition, the nanoparticle formulation improved the skin permeability of NDFX.

Conclusion

APPS-derived nanoparticles were shown to be useful as skin-targeting nanocarriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1

Similar content being viewed by others

Abbreviations

APPS:

Trisodium L-ascorbyl 2-phosphate 6-palmitate

DDSs:

Drug delivery systems

DLS:

Dynamic light scattering

DPPH:

2,2-diphenyl-1-picrylhydrazyl

DSPE-PEG 2000:

Distearoyl phosphatidylethanolamine-polyethylene glycol 2000

EE%:

Encapsulation efficiency rate

HPLC:

High-performance liquid chromatography

IC50 :

50% inhibitory concentration

IPM:

Isopropyl myristate

NDFX:

Nadifloxacin

PEG:

Polyethylene glycol

TEM:

Transmission electron microscopy

YMP:

Yucatan micropig

References

  1. Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B: Biointerfaces. 2010;75(1):1–18.

    Article  CAS  PubMed  Google Scholar 

  2. Naahidi S, Jafari M, Edalat F, Raymond K, Khademhosseini A, Chen P. Biocompatibility of engineered nanoparticles for drug delivery. J Control Release. 2013;166(2):182–94.

    Article  CAS  PubMed  Google Scholar 

  3. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: An overview of biomedical applications. J Control Release. 2012;161(2):505–22.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang L, Li Y, Yu JC. Chemical modification of inorganic nanostructures for targeted and controlled drug delivery in cancer treatment. J Mater Chem B. 2014;2(5):452–70.

    Article  CAS  Google Scholar 

  5. Chen H, Khemtong C, Yang X, Chang X, Gao J. Nanonization strategies for poorly water-soluble drugs. Drug Discov Today. 2011;16(7–8):354–60.

    Article  CAS  PubMed  Google Scholar 

  6. Fryd MM, Mason TG. Advanced Nanoemulsions. Annu Rev Phys Chem. 2012;63(1):493–518.

    Article  CAS  PubMed  Google Scholar 

  7. Lohani A, Verma A, Joshi H, Yadav N, Karki N. Nanotechnology-based cosmeceuticals. ISRN Dermatol. 2014;843687. https://doi.org/10.1155/2014/843687.

  8. Musa SH, Basri M, Masoumi HRF, Shamsudin N, Salim N. Enhancement of physicochemical properties of nanocolloidal carrier loaded with cyclosporine for topical treatment of psoriasis: In vitro diffusion and in vivo hydrating action. Int J Nanomedicine. 2017;12:2427–41.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ghate VM, Lewis SA, Prabhu P, Dubey A, Patel N. Nanostructured lipid carriers for the topical delivery of tretinoin. Eur J Pharm Biopharm. 2016;108:253–61.

    Article  CAS  PubMed  Google Scholar 

  10. Monge-Fuentes V, Muehlmann LA, Longo JPF, Silva JR, Fascineli ML, Azevedo RB, et al. Photodynamic therapy mediated by acai oil (Euterpe oleracea Martius) in nanoemulsion: A potential treatment for melanoma. J Photochem Photobiol B Biol. 2017;166:301–10.

    Article  CAS  Google Scholar 

  11. Pepe D, Carvalho VFM, McCall M, De Lemos DP, Lopes LB. Transportan in nanocarriers improves skin localization and antitumor activity of paclitaxel. Int J Nanomedicine. 2016;11:2009–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Guo F, Wang J, Ma M, Tan F, Li N. Skin targeted lipid vesicles as novel nano-carrier of ketoconazole: characterization, in vitro and in vivo evaluation. J Mater Sci Mater Med. 2015;26(4):175.

    Article  PubMed  Google Scholar 

  13. Qian C, McClements DJ. Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: Factors affecting particle size. Food Hydrocoll. 2011;25(5):1000–8.

    Article  CAS  Google Scholar 

  14. Anarjan N, Nehdi IA, Tan CP. Protection of astaxanthin in astaxanthin nanodispersions using additional antioxidants. Molecules. 2013;18(7):7699–710.

    Article  CAS  PubMed  Google Scholar 

  15. Takebayashi J, Tai A, Gohda E, Yamamoto I. Characterization of the radical-scavenging reaction of 2-O-substituted ascorbic acid derivatives, AA-2G, AA-2P, and AA-2S: a kinetic and stoichiometric study. Biol Pharm Bull. 2006;29(4):766–71.

    Article  CAS  PubMed  Google Scholar 

  16. Elmore AR. Final report of the safety assessment of L-Ascorbic Acid, Calcium Ascorbate, Magnesium Ascorbate, Magnesium Ascorbyl Phosphate, Sodium Ascorbate, and Sodium Ascorbyl Phosphate as used in cosmetics. Int J Toxicol. 2005;24(2):51–111.

    PubMed  Google Scholar 

  17. Fočo A, Gašperlin M, Kristl J. Investigation of liposomes as carriers of sodium ascorbyl phosphate for cutaneous photoprotection. Int J Pharm. 2005;291(1–2):21–9.

    PubMed  Google Scholar 

  18. Inoue Y, Yoshimura S, Tozuka Y, Moribe K, Kumamoto T, Ishikawa T, et al. Application of ascorbic acid 2-glucoside as a solubilizing agent for clarithromycin: Solubilization and nanoparticle formation. Int J Pharm. 2007;331(1):38–45.

    Article  CAS  PubMed  Google Scholar 

  19. Yoksan R, Jirawutthiwongchai J, Arpo K. Encapsulation of ascorbyl palmitate in chitosan nanoparticles by oil-in-water emulsion and ionic gelation processes. Colloids Surf B: Biointerfaces. 2010;76(1):292–7.

    Article  CAS  PubMed  Google Scholar 

  20. Gopinath D, Ravi D, Rao BR, Apte SS, Renuka D, Rambhau D. Ascorbyl palmitate vesicles (Aspasomes): Formation, characterization and applications. Int J Pharm. 2004;271(1–2):95–113.

    Article  CAS  PubMed  Google Scholar 

  21. Du CB, Liu JW, Su W, Ren YH, Wei DZ. The protective effect of ascorbic acid derivative on PC12 cells: involvement of its ROS scavenging ability. Life Sci. 2003;74(6):771–80.

    Article  CAS  PubMed  Google Scholar 

  22. Murakami K, Inagaki J, Saito M, Ikeda Y, Tsuda C, Noda Y, et al. Skin atrophy in cytoplasmic SOD-deficient mice and its complete recovery using a vitamin C derivative. Biochem Biophys Res Commun. 2009;382(2):457–61.

    Article  CAS  PubMed  Google Scholar 

  23. Yokosawa M, Sonoda Y, Sugiyama S, Saito R, Yamashita Y, Nishihara M, et al. Convection-enhanced delivery of a synthetic retinoid Am80, loaded into polymeric micelles, prolongs the survival of rats bearing intracranial glioblastoma xenografts. Tohoku J Exp Med. 2010;221:257–64.

    Article  CAS  PubMed  Google Scholar 

  24. Kuroda JI, Kuratsu JI, Yasunaga M, Koga Y, Saito Y, Matsumura Y. Potent antitumor effect of SN-38-incorporating polymeric micelle, NK012, against malignant glioma. Int J Cancer. 2009;124(11):2505–11.

    Article  CAS  PubMed  Google Scholar 

  25. Gong J, Chen M, Zheng Y, Wang S, Wang Y. Polymeric micelles drug delivery system in oncology. J Control Release. 2012;159(3):312–23.

    Article  CAS  PubMed  Google Scholar 

  26. Lukyanov AN, Torchilin VP. Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv Drug Deliv Rev. 2004;56(9):1273–89.

    Article  CAS  PubMed  Google Scholar 

  27. Remsberg CM, Zhao Y, Takemoto JK, Bertram RM, Davies NM, Forrest ML. Pharmacokinetic evaluation of a DSPE-PEG2000 micellar formulation of ridaforolimus in rat. Pharmaceutics. 2013;5(1):81–93.

    CAS  Google Scholar 

  28. Park H, Lee J, Jeong S, Im BN, Kim MK, Yang SG, et al. Lipase-Sensitive Transfersomes Based on Photosensitizer/ Polymerizable Lipid Conjugate for Selective Antimicrobial Photodynamic Therapy of Acne. Adv Healthc Mater. 2016;5(24):3139–47.

    Article  CAS  PubMed  Google Scholar 

  29. Boakye CHA, Patel K, Singh M. Doxorubicin liposomes as an investigative model to study the skin permeation of nanocarriers. Int J Pharm. 2015;489(1–2):106–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tuntiyasawasdikul S, Limpongsa E, Jaipakdee N, Sripanidkulchai B. Transdermal permeation of Kaempferia parviflora methoxyflavones from isopropyl myristate-based vehicles. AAPS Pharm Sci Tech. 2014;15(4):947–55.

    Article  CAS  Google Scholar 

  31. Kitagawa S, Tanaka Y, Tanaka M, Endo K, Yoshii A. Enhanced skin delivery of quercetin by microemulsion. J Pharm Pharmacol. 2009;61(7):855–60.

    Article  CAS  PubMed  Google Scholar 

  32. Kitagawa S, Inoue K, Teraoka R, Morita S. Enhanced skin delivery of genistein and other two isoflavones by microemulsion and prevention against UV irradiation-induced erythema formation. Chem Pharm Bull (Tokyo). 2010;58(3):398–401.

    Article  CAS  Google Scholar 

  33. Kuwahara K, Kitazawa T, Kitagaki H, Tsukamoto T, Kikuchi M. Nadifloxacin, an antiacne quinolone antimicrobial, inhibits the production of proinflammatory cytokines by human peripheral blood mononuclear cells and normal human keratinocytes. J Dermatol Sci. 2005;38(1):47–55.

    Article  CAS  PubMed  Google Scholar 

  34. Inoue Y, Shimura A, Horage M, Maeda R, Murata I, Sugino M, et al. Effects of the properties of creams on skin penetration. Int J Pharm. 2015;5(3):645–54.

    CAS  Google Scholar 

  35. Shinde U, Pokharkar S, Modani S. Design and evaluation of microemulsion gel system of nadifloxacin. Indian J Pharm Sci. 2012;74(3):237–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Inoue Y, Matsumoto M, Kimura M, Tanaka T, Kanamoto I. Comparison of the properties of brand-name and generic nadifloxacin creams. Medicina (B Aires). 2011;47(11):616–22.

    Google Scholar 

  37. Yang R, Fu Y, Di Li L, Liu JM. Medium effects on fluorescence of ciprofloxacin hydrochloride. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2003;59(12):2723–32.

    Article  Google Scholar 

  38. Moribe K, Maruyama S, Inoue Y, Suzuki T, Fukami T, Tomono K, et al. Ascorbyl dipalmitate/PEG-lipid nanoparticles as a novel carrier for hydrophobic drugs. Int J Pharm. 2010;387(1–2):236–43.

    Article  CAS  PubMed  Google Scholar 

  39. Moribe K, Tanaka E, Maruyama K, Iwatsuru M. Enhanced Encapsulation of Amphotericin B into Liposomes by Complex Formation with Polyethylene Glycol Derivatives. Pharm Res. 1998;15(11):1737–42.

    Article  CAS  PubMed  Google Scholar 

  40. Singh R, Lillard JW. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009;86(3):215–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Saberi AH, Fang Y, Mcclements DJ. Effect of Salts on Formation and Stability of Vitamin E - Enriched Mini- emulsions Produced by Spontaneous Emulsification. J Agric Food Chem. 2014;62(46):11246–53.

    Article  CAS  PubMed  Google Scholar 

  42. Márquez AL, Medrano A, Panizzolo LA, Wagner JR. Effect of calcium salts and surfactant concentration on the stability of water-in-oil (w/o) emulsions prepared with polyglycerol polyricinoleate. J Colloid Interface Sci. 2010;341(1):101–8.

    Article  PubMed  Google Scholar 

  43. Silvander M, Hellström A, Wärnheim T, Claesson P. Rheological properties of phospholipid-stabilized parenteral oil-in-water emulsions - Effects of electrolyte concentration and presence of heparin. Int J Pharm. 2003;252(1–2):123–32.

    Article  CAS  PubMed  Google Scholar 

  44. Sandström MC, Johansson E, Edwards K. Influence of preparation path on the formation of discs and threadlike micelles in DSPE-PEG2000/lipid systems. Biophys Chem. 2008;132(2–3):97–103.

    Article  PubMed  Google Scholar 

  45. Johnsson M, Hansson P, Edwards K. Spherical micelles and other self-assembled structures in dilute aqueous mixtures of Poly (ethylene glycol) lipid. J Phys Chem B. 2001;105:8420–30.

    Article  CAS  Google Scholar 

  46. Tokudome Y, Uchida R, Yokote T, Todo H, Hada N, Kon T, et al. Effect of topically applied sphingomyelin-based liposomes on the ceramide level in a three-dimensional cultured human skin model. J Liposome Res. 2010;20(1):49–54.

    Article  CAS  PubMed  Google Scholar 

  47. Villasmil-Sánchez S, Rabasco AM, González-Rodríguez ML. Thermal and 31P-NMR studies to elucidate sumatriptan succinate entrapment behavior in phosphatidylcholine/cholesterol liposomes. Comparative 31P-NMR analysis on negatively and positively-charged liposomes. Colloids Surf B: Biointerfaces. 2013;105:14–23.

    Article  PubMed  Google Scholar 

  48. Eichner A, Stahlberg S, Sonnenberger S, Lange S, Dobner B, Ostermann A, et al. Influence of the penetration enhancer isopropyl myristate on stratum corneum lipid model membranes revealed by neutron diffraction and 2H NMR experiments. Biochim Biophys Acta Biomembr. 2017;1859(5):745–55.

    Article  CAS  Google Scholar 

  49. Leal C, Rögnvaldsson S, Fossheim S, Nilssen EA, Topgaard D. Dynamic and structural aspects of PEGylated liposomes monitored by NMR. J Colloid Interface Sci. 2008;325(2):485–93.

    Article  CAS  PubMed  Google Scholar 

  50. Voronov VK. NMR spectra transformed by electron-nuclear coupling as indicator of structural peculiarities of magnetically active molecular systems. J Phys Chem A. 2016;120(34):6688–92.

    Article  CAS  PubMed  Google Scholar 

  51. Todo H, Kimura E, Yasuno H, Tokudome Y, Hashimoto F, Ikarashi Y, et al. Permeation pathway of macromolecules and nanospheres through skin. Biol Pharm Bull. 2010;33(8):1394–9.

    Article  CAS  PubMed  Google Scholar 

  52. Bos JD, Meinardi MMHM. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol. 2000;9(3):1–5.

    Article  Google Scholar 

  53. Bouwstra JA, Honeywell-Nguyen PL, Gooris GS, Ponec M. Structure of the skin barrier and its modulation by vesicular formulations. Vol. 42. Prog Lipid Res. 2003;42(1):1–36.

    Article  CAS  PubMed  Google Scholar 

  54. Honeywell-Nguyen PL, Bouwstra JA. Vesicles as a tool for transdermal and dermal delivery. Drug Discov Today Technol. 2005;2(1):67–74.

    Article  CAS  PubMed  Google Scholar 

  55. Iino H, Fujii M, Fujino M, Kohara S, Hashizaki K, Kira H, et al. Influence of Characteristics of Oily Vehicle on Skin Penetration of Ufenamate. Biol Pharm Bull. 2017;40(2):220–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Inoue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inoue, Y., Hibino, M., Murata, I. et al. A Nanocarrier Skin-Targeted Drug Delivery System using an Ascorbic Acid Derivative. Pharm Res 35, 1 (2018). https://doi.org/10.1007/s11095-017-2311-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-017-2311-3

KEY WORDS

Navigation