Skip to main content

Advertisement

Log in

Computational Analysis on Down-Regulated Images of Macrophage Scavenger Receptor

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Background

Thiolated-graphene quantum dots (SH-GQDs) were developed and assessed for an efficient preventive means against atherosclerosis and potential toxicity through computational image analysis and animal model studies.

Experiments

Zebrafish (wild-type, wt) were used for evaluation of toxicity through the assessment of embryonic mortality, malformation and ROS generation. The amounts of SH-GQDs uptaken by mouse macrophage cells (Raw264.7) were analyzed using a flow cytometer. For the time-dependent cellular uptake study, Raw264.7 cells were treated with SH-GQDs (200 μg/ml) at specific time intervals (0.5, 1, 2, 5, 10 and 24 h). The efficacy of SH-GQDs on DiO-oxLDL efflux by Raw264.7 cells was evaluated (DiO, 3,3′-dioctadecyl-oxacarbocyanine) based on the percentage of positive cells containing DiO-oxLDL. TEER of human primary umbilical vein endothelial cells (hUVECs) were examined to assess the barrier function of the cell layers upon being treated with oxLDL.

Results

SH-GQDs significantly enhanced the efflux of oxLDL and down-regulated macrophage scavenger receptor (MSR) in Raw264.7. The ROS levels stimulated by oxidative stress were alleviated by SH-GQDs. oxLDL (10 μg/ml) significantly impaired the barrier function (TEER) of adherence junctions, which was recovered by SH-GQDs (10 μg/ml) (oxLDL: 67.2 ± 2.2 Ω-cm2 for 24 h; SH-GQDs: 114.6 ± 8.5 Ω-cm2 for 24 h). The mortality rate (46% for 1 mg/ml) of the zebra fish increased, as the concentrations and exposure duration of SH-GQDs increased. SH-GQDs exerted negligible side effects.

Conclusion

SH-GQDs have target specificity to macrophage scavenger receptor (MSR) and efficiently recovered the ROS levels and TEER. SH-GQDs did not induce endothelial cell layer disruption nor affected zebrafish larvae survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABCA1:

ATP-binding cassette transporter

DCFDA:

Dichlorofluorescin diacetate

MSR:

Macrophage scavenger receptor

oxLDL:

oxidized-low density lipoprotein

ROS:

Reactive oxygen species

SH-GQDs:

Thiolated-graphene quantum dots

TEER:

Trans-epithelial Electrical Resistance

References

  1. Stirrat CG, Newby DE, Robson JMJ, Jansen MA. The Use of Superparamagnetic Iron Oxide Nanoparticles to Assess Cardiac Inflammation | SpringerLink. Curr Cardiovasc Imaging Rep. 2014;7:9263.

    Article  Google Scholar 

  2. Li M, Anastassiades CP, Joshi B, Komarck CM, Piraka C, Elmunzer BJ, et al. Affinity peptide for targeted detection of dysplasia in Barrett's esophagus. Gastroenterology. 2010;139(5):1472–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Atwal JK, Chen Y, Chiu C, Mortensen DL, Meilandt WJ, Liu Y, et al. A therapeutic antibody targeting BACE1 inhibits amyloid-beta production in vivo. Sci Transl Med. 2011;3(84):84ra43.

    Article  PubMed  Google Scholar 

  4. Seo JW, Baek H, Mahakian LM, Kusunose J, Hamzah J, Ruoslahti E, et al. (64)Cu-labeled LyP-1-dendrimer for PET-CT imaging of atherosclerotic plaque. Bioconjug Chem. 2014;25(2):231–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stendahl JC, Sinusas AJ. Nanoparticles for Cardiovascular Imaging and Therapeutic Delivery, Part 1: Compositions and Features. J Nucl Med. 2015;56(10):1469–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mustapha A, Hussain A, Samad SA, Zulkifley MA, Diyana Wan Zaki WM, Hamid HA. Design and development of a content-based medical image retrieval system for spine vertebrae irregularity. Biomed Eng Online. 2015;14:6.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hofmann M, Steinke F, Scheel V, Charpiat G, Farquhar J, Aschoff P, et al. MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration. J Nucl Med. 2008;49(11):1875–83.

    Article  PubMed  Google Scholar 

  8. Ding H, Wu F. Image Guided Biodistribution of Drugs and Drug Delivery. Theranostics. 2012;2(11):1037–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Perez-Medina C, Abdel-Atti D, Tang J, Zhao Y, Fayad ZA, Lewis JS, et al. Nanoreporter PET predicts the efficacy of anti-cancer nanotherapy. Nat Commun. 2016;7:11838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Valeur B, Berberan-Santos MN. Molecular fluorescence: principles and applications, 2nd Ed.; 2012.

  11. Jares-Erijman EA, Jovin TM. FRET imaging. Nat Biotechnol. 2003;21(11):1387–95.

    Article  CAS  PubMed  Google Scholar 

  12. Kelly K, Alencar H, Funovics M, Mahmood U, Weissleder R. Detection of invasive colon cancer using a novel, targeted, library-derived fluorescent peptide. Cancer Res. 2004;64(17):6247–51.

    Article  CAS  PubMed  Google Scholar 

  13. Lane LA, Smith AM, Lian T, Nie S. Compact and blinking-suppressed quantum dots for single-particle tracking in live cells. J Phys Chem B. 2014;118(49):14140–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ma W, Xu W, Xu H, Chen Y, He Z, Ma M. Nitric oxide modulates cadmium influx during cadmium-induced programmed cell death in tobacco BY-2 cells. Planta. 2010;232(2):325–35.

    Article  CAS  PubMed  Google Scholar 

  15. Oh B, Lee CH. Development of Thiolated-Graphene Quantum Dots for Regulation of ROS in macrophages. Pharm Res. 2016;33(11):2736–47.

    Article  CAS  PubMed  Google Scholar 

  16. Kzhyshkowska J, Neyen C, Gordon S. Role of macrophage scavenger receptors in atherosclerosis. Immunobiology. 2012;217(5):492–502.

    Article  CAS  PubMed  Google Scholar 

  17. Duan J, Yu Y, Li Y, Sun Z. Cardiovascular toxicity evaluation of silica nanoparticles in endothelial cells and zebrafish model. Biomaterials. 2013;34(23):5853–62.

    Article  CAS  PubMed  Google Scholar 

  18. Bakkers J. Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc Res. 2011;91(2):279–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lieschke GJ, Trede NS. Fish immunology. Curr Biol. 2009;19(16):R678–82.

    Article  CAS  PubMed  Google Scholar 

  20. Renshaw SA, Trede NS. A model 450 million years in the making: zebrafish and vertebrate immunity. Dis Model Mech. 2012;5(1):38–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zheng W, Li Z, Nguyen AT, Li C, Emelyanov A, Gong Z. Xmrk, Kras and Myc transgenic zebrafish liver cancer models share molecular signatures with subsets of human hepatocellular carcinoma. PLoS One. 2014;9(3).

  22. Oh B, Lee CH. Advanced cardiovascular stent coated with nanofiber. Mol Pharm. 2013;10(12):4432–42.

    Article  CAS  PubMed  Google Scholar 

  23. Parker MO, Millington ME, Combe FJ, Brennan CH. Housing conditions differentially affect physiological and behavioural stress responses of zebrafish, as well as the response to anxiolytics. PLoS One. 2012;7(4):e34992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shang W, Zhang X, Zhang M, Fan Z, Sun Y, Han M, et al. The uptake mechanism and biocompatibility of graphene quantum dots with human neural stem cells. Nano. 2014;6(11):5799–806.

    CAS  Google Scholar 

  25. Petersen LK, York AW, Lewis DR, Ahuja S, Uhrich KE, Prud'homme RK, et al. Amphiphilic nanoparticles repress macrophage atherogenesis: novel core/shell designs for scavenger receptor targeting and down-regulation. Mol Pharm. 2014;11(8):2815–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lewis DR, Petersen LK, York AW, Zablocki KR, Joseph LB, Kholodovych V, et al. Sugar-based amphiphilic nanoparticles arrest atherosclerosis in vivo. Proc Natl Acad Sci U S A. 2015;112(9):2693–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li AC, Glass CK. The macrophage foam cell as a target for therapeutic intervention. Nat Med. 2002;8(11):1235–42.

    Article  CAS  PubMed  Google Scholar 

  28. Sandoo A, van Zanten JJV, Metsios GS, Carroll D, Kitas GD. The Endothelium and Its Role in Regulating Vascular Tone. Open Cardiovasc Med J. 2010;4:302–12.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Oh B, Lee CH. Nanofiber-coated drug eluting stent for the stabilization of mast cells. Pharm Res. 2014;31(9):2463–78.

    Article  CAS  PubMed  Google Scholar 

  30. McHugh J, Cheek DJ. Nitric oxide and regulation of vascular tone: pharmacological and physiological considerations. Am J Crit Care. 1998;7(2):131–40. quiz 141-132

    CAS  PubMed  Google Scholar 

  31. Bussolati B, Dunk C, Grohman M, Kontos CD, Mason J, Ahmed A. Vascular endothelial growth factor receptor-1 modulates vascular endothelial growth factor-mediated angiogenesis via nitric oxide. Am J Pathol. 2001;159(3):993–1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Byfield FJ, Tikku S, Rothblat GH, Gooch KJ, Levitan I. OxLDL increases endothelial stiffness, force generation, and network formation. J Lipid Res. 2006;47(4):715–23.

    Article  CAS  PubMed  Google Scholar 

  33. Valente AJ, Irimpen AM, Siebenlist U, Chandrasekar B. OxLDL induces endothelial dysfunction and death via TRAF3IP2: inhibition by HDL3 and AMPK activators. Free Radic Biol Med. 2014;70:117–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhu X, Zhu L, Li Y, Duan Z, Chen W, Alvarez PJ. Developmental toxicity in zebrafish (Danio rerio) embryos after exposure to manufactured nanomaterials: buckminsterfullerene aggregates (nC60) and fullerol. Environ Toxicol Chem. 2007;26(5):976–9.

    Article  CAS  PubMed  Google Scholar 

  35. Wang K, Ma J, He M, Gao G, Xu H, Sang J, et al. Toxicity assessments of near-infrared upconversion luminescent LaF3:Yb,Er in early development of zebrafish embryos. Theranostics. 2013;3(4):258–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ducharme NA, Reif DM, Gustafsson JA, Bondesson M. Comparison of toxicity values across zebrafish early life stages and mammalian studies: Implications for chemical testing. Reprod Toxicol. 2015;55:3–10.

    Article  CAS  PubMed  Google Scholar 

  37. Duan J, Yu Y, Shi H, Tian L, Guo C, Huang P, Zhou X, Peng S, Sun Z. Toxic effects of silica nanoparticles on zebrafish embryos and larvae. PLoS One. 2013;8(9).

  38. Lin S, Zhao Y, Nel AE. Zebrafish: an in vivo model for nano EHS studies. Small. 2013;9:1608–18.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi H. Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, B., Lee, Y., Fu, M. et al. Computational Analysis on Down-Regulated Images of Macrophage Scavenger Receptor. Pharm Res 34, 2066–2074 (2017). https://doi.org/10.1007/s11095-017-2211-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-017-2211-6

KEY WORDS

Navigation