Skip to main content

Advertisement

Log in

Nimodipine Ophthalmic Formulations for Management of Glaucoma

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Preparation and evaluation of topical ophthalmic formulations containing nimodipine-CD complexes prepared using HP-β-CD, SBE-β-CD and M-β-CD for the management of glaucoma.

Methods

Nimodipine-CD complexes were prepared using a freeze-drying method. Two different molar ratios (NMD:CD) were used for each cyclodextrin. The inclusion complexes were characterized using DSC, FTIR, yield (%), drug content and in vitro release characteristics. NMD-CD complexes incorporated into chitosan eye drops and a temperature-triggered in situ gelling system were evaluated for their pH, viscosity and in vitro release characteristics. We determined the intraocular pressure (IOP) lowering effect of NMD-hydroxypropylmethylcellulose (HPMC) eye drops through a single dose response design using C57BL/6J mice. The minimum effective concentration (MEC) of nimodipine was further applied to mice that vary in the parental allele of Cacna1s, the drug target of nimodipine. Cytotoxicity was also evaluated.

Results

Our ophthalmic formulations possessed pH and viscosity values that are compatible with the eye. In vitro release of nimodipine was significantly increased from chitosan eye drops containing NMD-CD complexes compared to uncomplexed drug. Administration of nimodipine can lower IOP significantly after a single drop of drug HPMC suspension. The IOP-lowering response of the MEC (0.6%) was significantly influenced by the parental allele of Cacna1s.

Conclusions

Nimodipine can be used as a promising topical drug for management of glaucoma through ocular delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

AUCtotal :

Total area under the IOP reduction (%)-versus-time curve

B6:

C57BL/6J

Cacna1s :

Calcium voltage-gated channel subunit alpha1s

CCBs:

Calcium-channel blockers

CD:

Cyclodextrin

CE:

Complexation efficiency

DMSO:

Dimethyl sulfoxide

DSC:

Differential scanning calorimetry

EMEM:

Eagle’s minimal essential medium

FTIR:

Fourier transform infrared spectroscopy

HPMC:

Hydroxypropylmethylcellulose

HP-β-CD:

Hydroxypropyl-β-cyclodextrin

IOP:

Intraocular pressure

Kc :

Binding or stability constant

MEC:

Minimum effective concentration

MTT:

Methyl thiazol tetrazolium

M-β-CD:

Methyl-β-cyclodextrin

PBS:

Phosphate buffered saline

PEG 300:

Poly (ethylene glycol, Mn 300)

PM:

Physical mixture

R:

Universal gas constant

S0 :

Aqueous solubility of the drug in the absence of cyclodextrin

SBE-β-CD:

Sulfobutyl ether-β-cyclodextrin

SEM:

Scanning electron microscopy

SLS:

Sodium lauryl sulfate

T:

Experimental operating temperature (Kelvin)

Tend :

Time required for IOP to return again to its baseline

Tmax :

Time required to reach maximum decrease in IOP

References

  1. Cook C, Foster P. Epidemiology of glaucoma: what’s new? Can J Ophthalmol. 2012;47(3):223–6.

    Article  PubMed  Google Scholar 

  2. Quigley EM. Commentary: synbiotics and gut microbiota in older people--a microbial guide to healthy ageing. Aliment Pharmacol Ther. 2013;38(9):1141–2.

    Article  CAS  PubMed  Google Scholar 

  3. Heijl A, Leske MC, Bengtsson B, Hyman L, Bengtsson B, Hussein M. Early manifest glaucoma trial G. Reduction of intraocular pressure and glaucoma progression: results from the early manifest glaucoma trial. Arch Ophthalmol. 2002;120(10):1268–79.

    Article  PubMed  Google Scholar 

  4. Musch DC, Gillespie BW, Lichter PR, Niziol LM, Janz NK, Investigators CS. Visual field progression in the collaborative initial glaucoma treatment study the impact of treatment and other baseline factors. Ophthalmology. 2009;116(2):200–7.

    Article  PubMed  Google Scholar 

  5. Rodriguez-Aller M, Guinchard S, Guillarme D, Pupier M, Jeannerat D, Rivara-Minten E, Veuthey JL, Gurny R. New prostaglandin analog formulation for glaucoma treatment containing cyclodextrins for improved stability, solubility and ocular tolerance. Eur J Pharm Biopharm. 2015.

  6. Jansook P, Stefánsson E, Thorsteinsdóttir M, Sigurdsson BB, Kristjánsdóttir SS, Bas JF, et al. Cyclodextrin solubilization of carbonic anhydrase inhibitor drugs: formulation of dorzolamide eye drop microparticle suspension. Eur J Pharm Biopharm. 2010;76:208–14.

    Article  CAS  PubMed  Google Scholar 

  7. Sharma S, Trikha S, Perera SA, Aung T. Clinical effectiveness of brinzolamide 1%-brimonidine 0.2% fixed combination for primary open-angle glaucoma and ocular hypertension. Clin Ophthalmol. 2015;9:2201–7.

    PubMed  PubMed Central  Google Scholar 

  8. Ibrahim MM, Abd-Elgawad AH, Soliman OA, Jablonski MM. Novel topical ophthalmic formulations for management of glaucoma. Pharm Res-Dordr. 2013;30(11):2818–31.

    Article  CAS  Google Scholar 

  9. Yang H, Tyagi P, Kadam RS, Holden CA, Kompella UB. Hybrid dendrimer hydrogel/PLGA nanoparticle platform sustains drug delivery for one week and anti- glaucoma effects for four days following one-time topical administration. ACS Nano. 2012;6:7595–606.

    Article  CAS  PubMed  Google Scholar 

  10. Mayama C. Calcium channels and their blockers in intraocular pressure and glaucoma. Eur J Pharmacol. 2014;739:96–105.

    Article  CAS  PubMed  Google Scholar 

  11. Sygnecka K, Heine C, Scherf N, Fasold M, Binder H, Scheller C, et al. Nimodipine enhances neurite outgrowth in dopaminergic brain slice co-cultures. Int J Dev Neurosci. 2015;40:1–11.

    Article  CAS  PubMed  Google Scholar 

  12. Rinkel GJ, Feigin VL, Algra A, van den Bergh WM, Vermeulen M, van Gijn J. Calcium antagonists for aneurysmal subarachnoid haemorrhage. Cochrane Database Syst Rev. 2005;CD000277(1):CD000277.

  13. Yang D, Zhu J, Zheng Y, Ge L, Zhang G. Preparation, characterization, and pharmacokinetics of sterically stabilized nimodipine-containing liposomes. Drug Dev Ind Pharm. 2006;32(2):219–27.

    Article  CAS  PubMed  Google Scholar 

  14. Fu Q, Sun J, Zhang D, Li M, Wang YJ, Ling GX, et al. Nimodipine nanocrystals for oral bioavailability improvement: preparation, characterization and pharmacokinetic studies. Colloids Surf B: Biointerfaces. 2013;109:161–6.

    Article  CAS  PubMed  Google Scholar 

  15. Chalikwar SS, Belgamwar VS, Talele VR, Surana SJ, Patil MU. Formulation and evaluation of nimodipine-loaded solid lipid nanoparticles delivered via lymphatic transport system. Colloids Surf B: Biointerfaces. 2012;97:109–16.

    Article  CAS  PubMed  Google Scholar 

  16. Bege N, Renette T, Endres T, Beck-Broichsitter M, Hanggi D, Kissel T. In situ forming nimodipine depot system based on microparticles for the treatment of posthemorrhagic cerebral vasospasm. Eur J Pharm Biopharm. 2013;84(1):99–105.

    Article  CAS  PubMed  Google Scholar 

  17. Liu X, Wang S, Chai L, Zhang D, Sun Y, Xu L, et al. A two-step strategy to design high bioavailable controlled-release nimodipine tablets: the push-pull osmotic pump in combination with the micronization/solid dispersion techniques. Int J Pharm. 2014;461(1–2):529–39.

    Article  CAS  PubMed  Google Scholar 

  18. Huang SL, Yu XH, Yang LL, Song FL, Chen G, Lv ZF, et al. The efficacy of nimodipine drug delivery using mPEG-PLA micelles and mPEG-PLA/TPGS mixed micelles. Eur J Pharm Sci. 2014;63:187–98.

    Article  CAS  PubMed  Google Scholar 

  19. Moreno LC, Cavalcanti IM, Satyal P, Santos-Magalhaes NS, Rolim HM, Freitas RM. Acute toxicity and anticonvulsant activity of liposomes containing nimodipine on pilocarpine-induced seizures in mice. Neurosci Lett. 2015;585:38–42.

    Article  CAS  PubMed  Google Scholar 

  20. Michalk F, Michelson G, Harazny J, Werner U, Daniel WG, Werner D. Single-dose nimodipine normalizes impaired retinal circulation in normal tension glaucoma. J Glaucoma. 2004;13(2):158–62.

    Article  PubMed  Google Scholar 

  21. Luksch A, Rainer G, Koyuncu D, Ehrlich P, Maca T, Gschwandtner ME, et al. Effect of nimodipine on ocular blood flow and colour contrast sensitivity in patients with normal tension glaucoma. Br J Ophthalmol. 2005;89(1):21–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J Pharm Sci. 1996;85(10):1017–25.

    Article  CAS  PubMed  Google Scholar 

  23. Najlaoui F, Pigeon P, Abdelkafi Z, Leclerc S, Durand P, Ayeb ME, et al. Phthalimido-ferrocidiphenol cyclodextrin complexes: characterization and anticancer activity. Int J Pharm. 2015;491(1–2):323–34.

    Article  CAS  PubMed  Google Scholar 

  24. Higuchi T, Connors KA. Phase-solubility techniques. Adv Anal Chem Instrum. 1965;4:117–212.

    CAS  Google Scholar 

  25. Jun SW, Kim M, Kim J, Park HJ, Lee S, Woo J, et al. Preparation and characterization of simvastatin/hydroxypropyl-β-cyclodextrin inclusion complex using supercritical antisolvent (SAS) process. Eur J Pharm Biopharm. 2007;66(3):413–21.

    Article  CAS  PubMed  Google Scholar 

  26. Mendes C, Buttchevitz A, Kruger JH, Kratz JM, Simoes CM, de Oliveira BP, et al. Inclusion complexes of hydrochlorothiazide and beta-cyclodextrin: physicochemical characteristics, in vitro and in vivo studies. Eur J Pharm Sci. 2016;83:71–8.

    Article  CAS  PubMed  Google Scholar 

  27. Desai S, Poddar A, Sawant K. Formulation of cyclodextrin inclusion complex-based orally disintegrating tablet of eslicarbazepine acetate for improved oral bioavailability. Mater Sci Eng C. 2016;58:826–34.

    Article  CAS  Google Scholar 

  28. Ibrahim MM, Abd-Elgawad AE, Soliman OA, Jablonski MM. Nanoparticle-based topical ophthalmic formulations for sustained celecoxib release. J Pharm Sci. 2013;102(3):1036–53.

    Article  CAS  PubMed  Google Scholar 

  29. Mehta AK, Yadav KS, Sawant KK. Nimodipine loaded PLGA nanoparticles: formulation optimization using factorial design, characterization and in vitro evaluation. Curr Drug Deliv. 2007;4(3):185–93.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Y, Zhuo R. Synthesis, characterization, and in vitro 5-fu release behavior of poly(2,2- dimethyltrimethylene carbonate)-poly(ethylene glycol)- poly(2,2-dimethyltrimethylene carbonate) nanoparticles. J Biomed Mater Res A. 2006;76A(4):674–80.

    Article  CAS  Google Scholar 

  31. Semcheddine F, Guissi NE, Liu X, Wu Z, Wang B. Effects of the preparation method on the formation of true nimodipine SBE-β-CD/HP-β-CD inclusion complexes and their dissolution rates enhancement. AAPS PharmSciTech. 2015;16(3):704–15.

    Article  CAS  PubMed  Google Scholar 

  32. Basalious EB, Shamma RN. Novel self-assembled nano-tubular mixed micelles of Pluronics P123, Pluronic F127 and phosphatidylcholine for oral delivery of nimodipine: In vitro characterization, ex vivo transport and in vivo pharmacokinetic studies. Int J Pharm. 2015;493(1–2):347–56.

    Article  CAS  PubMed  Google Scholar 

  33. Riekes MK, Caon T, Silva Jr J, Sordi R, Kuminek G, Bernardi LS, et al. Enhanced hypotensive effect of nimodipine solid dispersions produced by supercritical CO2 drying. Powder Technol. 2015;278:204–10.

    Article  CAS  Google Scholar 

  34. Rudrangi SRS, Bhomia R, Trivedi V, Vine GJ, Mitchell JC, Alexander BD, et al. Influence of the preparation method on the physicochemical properties of indomethacin and methyl-b-cyclodextrin complexes. Int J Pharm. 2015;479:381–90.

    Article  CAS  PubMed  Google Scholar 

  35. Sanna V, Roggio AM, Posadino AM, Cossu A, Marceddu S, Mariani A, et al. Novel docetaxel-loaded nanoparticles based on poly(lactide-co-caprolactone) and poly(lactide-co-glycolide-co-caprolactone) for prostate cancer treatment: formulation, characterization, and cytotoxicity studies. Nanoscale Res Lett. 2011;6(1):260.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang Z, He Z, Liang R, Ma Y, Huang W, Jiang R, et al. Fabrication of a micellar supramolecular hydrogel for ocular drug delivery. Biomacromolecules. 2016;17(3):798–807.

    Article  CAS  PubMed  Google Scholar 

  37. Banerjee R, Chakraborty H, Sarkar M. Host-guest complexation of oxicam NSAIDs with beta-cyclodextrin. Biopolymers. 2004;75(4):355–65.

    Article  CAS  PubMed  Google Scholar 

  38. Stella VJ, He Q. Cyclodextrins. Toxicol Pathol. 2008;36(1):30–42.

    Article  CAS  PubMed  Google Scholar 

  39. Maria DN, Mishra SR, Wang L, Abd-Elgawad AH, Soliman OA, El-Dahan MS, Jablonski MM. Water-soluble Complex of Curcumin with Cyclodextrins: Enhanced Physical Properties For Ocular Drug Deliv. Curr Drug Deliv. 2016;13.

Download references

ACKNOWLEDGEMENTS AND DISCLOSURES

This study was supported by an unrestricted grant from Research to Prevent Blindness (New York, NY), a grant from the Knights Templar Eye Foundation, and a grant from the Egyptian Government Joint Supervision Program. We thank Dr. Soumyajit Majumdar (Department of Pharmaceutics and Drug Delivery, University of Mississippi) for his assistance in generating the DSC and FTIR data. We also thank Dr. Joel Bumgardner (Department of Biomedical Engineering, The University of Memphis) for the use of his viscometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica M. Jablonski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maria, D.N., Abd-Elgawad, AE.H., Soliman, O.AE. et al. Nimodipine Ophthalmic Formulations for Management of Glaucoma. Pharm Res 34, 809–824 (2017). https://doi.org/10.1007/s11095-017-2110-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-017-2110-x

KEY WORDS

Navigation