Skip to main content
Log in

Intra- and Extracellular Biosynthesis and Characterization of Iron Nanoparticles from Prokaryotic Microorganisms with Anticoagulant Activity

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Background

The use of microorganisms for the synthesis of nanoparticles (NPs) is relatively new in basic research and technology areas.

Purpose

This work was conducted to optimized the biosynthesis of iron NPs intra- and extracellular by Escherichia coli or Pseudomonas aeruginosa and to evaluate their anticoagulant activity.

Study Design/Methods

The structures and properties of the iron NPs were investigated by Ultraviolet–visible (UV-vis) spectroscopy, Zeta potential, Dynamic light scattering (DLS), Field emission scanning electron microscope (FESEM)/ Energy dispersive X-ray (EDX) and transmission electron microscopy (TEM). Anticoagulant activity was determined by conducting trials of Thrombin Time (TT), Activated Partial Prothrombin Time (APTT) and Prothrombin Time (PT).

Results

UV-vis spectrum of the aqueous medium containing iron NPs showed a peak at 275 nm. The forming of iron NPs was confirmed by FESEM/ EDX, and TEM. The morphology was spherical shapes mostly with low polydispersity and the average particle diameter was 23 ± 1 nm. Iron NPs showed anticoagulant activity by the activation of extrinsic pathway.

Conclusion

The eco-friendly process of biosynthesis of iron NPs employing prokaryotic microorganisms presents a good anticoagulant activity. This could be explored as promising candidates for a variety of biomedical and pharmaceutical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

APTT:

Activated protombin time test

DLS:

Dynamic light scattering

EDX:

Energy dispersive X-ray

FESEM:

Field emission scanning electron microscope

NPs:

Nanoparticles

PT:

Protombin time

SPR:

Surface plasmon resonance

TEM:

Transmission electron microscopy

TSB:

Trypticase soy broth

TT:

Thrombin time

UV-vis:

Ultraviolet-visible

References

  1. Larrañeta E, McCrudden MT, Courtenay AJ, Donnelly RF. Microneedles: a new frontier in nanomedicine delivery. Pharm Res. 2016;33(5):1055–73. doi:10.1007/s11095-016-1885-5.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Liu J, Qiao SZ, Hu QH, Lu GQ. Magnetic nanocomposites with mesoporous structures: synthesis and applications. Small. 2011;7(4):425–43.

    Article  CAS  PubMed  Google Scholar 

  3. Luechinger NA, Grass RN, Athanassiou EK, Stark WJ. Bottom-up fabrication of metal/metal nanocomposites from nanoparticles of immiscible metals. Chem Mater. 2010;22(1):155–60.

    Article  CAS  Google Scholar 

  4. Hulkoti NI, Taranath TC. Biosynthesis of nanoparticles using microbes a review. Colloids Surf B. 2014;121:474–83.

    Article  CAS  Google Scholar 

  5. Teja AS, Koh P. Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog Crystal Growth Char Mat. 2009;55(1):22–45.

    Article  CAS  Google Scholar 

  6. Ali A, Zafar H, Zia M, Ul Haq I, Phull AR, Ali JS, et al. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl. 2016;9:49–67.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Akbarzadeh A, Samiei M, Davaran S. Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett. 2012;7(1):144.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hasany S, Ahmed I, Rajan J, Rehman A. Systematic review of the preparation techniques of iron oxide magnetic nanoparticles. Nanosci Nanotechnol. 2012;2(6):148–58.

    Article  Google Scholar 

  9. Narayanan KB, Sakthivel N. Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci. 2010;156(1-2):1–13.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang X, Yan S, Tyagi RD, Surampalli RY. Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere. 2011;82:489–94.

    Article  CAS  PubMed  Google Scholar 

  11. Naha PC, Lau KC, Hajfathalian M, Mian S, Chhour P, Uppuluri L, et al. Gold silver alloy nanoparticles (GSAN): an imaging probe for breast cancer screening with dual-energy mammography or computed tomography. Nanoscale. 2016;8(28):13740–54.

    Article  CAS  PubMed  Google Scholar 

  12. Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26:3995–4021.

    Article  CAS  PubMed  Google Scholar 

  13. Angel Villegas N, Baronetti J, Albesa I, Etcheverría A, Becerra MC, Padola NL, et al. Effect of antibiotics on cellular stress generated in Shiga toxin-producing Escherichia coli O157:H7 and non-O157 biofilms. Toxicol In Vitro. 2015;29:1692–700.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang J, Shin MC, Yang VC. Magnetic targeting of novel heparinized iron oxide nanoparticles evaluated in a 9L-glioma mouse model. Pharm Res. 2014;31(3):579–92.

    Article  PubMed  Google Scholar 

  15. Quinteros MA, Aiassa Martínez IM, Dalmasso PR, Páez PL. Silver nanoparticles: biosynthesis using an ATCC reference strain of Pseudomonas aeruginosa and activity as broad spectrum clinical antibacterial agents. Int J Biomater. 2016;2016:5971047. doi:10.1155/2016/5971047.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Quinteros MA, Cano Aristizábal V, Dalmasso PR, Paraje MG, Páez PL. Oxidative stress generation of silver nanoparticles in three bacterial genera and its relationship with the antimicrobial activity. Toxicol in Vitro. 2016;36:216–23.

    Article  CAS  PubMed  Google Scholar 

  17. Mohamed YM, Azzam AM, Amin BH, Safwat NA. Mycosynthesis of iron nanoparticles by Alternaria alternata and its antibacterial activity. Afr J Biotechnol. 2015;14(14):1234–41.

    Article  CAS  Google Scholar 

  18. Wiener Lab Group. Vademecum. Reagents for Clinical Laboratory. Ed 2000. Rosario, Argentina. 2000.

  19. Kern A, Várnai K, Vásárhelyi B. Thrombin generation assays and their clinical application. Orv Hetil. 2014;155(22):851–7.

    Article  PubMed  Google Scholar 

  20. Young DS. Effects of drugs on clinical laboratory tests. 4th ed. Washington DC: AACC Press; 2001.

    Google Scholar 

  21. Martínez-Gutierrez F, Thi EP, Silverman JM, de Oliveira CC, Svensson SL, Vanden Hoek A, et al. Antibacterial activity, inflammatory response, coagulation and cytotoxicity effects of silver nanoparticles. Nanomedicine. 2012;8:328–36.

    PubMed  Google Scholar 

  22. Lassenberger A, Bixner O, Gruenewald T, Lichtenegger H, Zirbs R, Reimhult E. Evaluation of high-yield purification methods on monodisperse PEG-grafted iron oxide nanoparticles.

  23. Bharde A, Wani A, Shouche Y, Joy PA, Prasad BLV, Sastry M. Bacterial synthesis of nanocrystalline magnetite. J Am Chem Soc. 2005;127:9326–7.

    Article  CAS  PubMed  Google Scholar 

  24. Lee JH, Roh Y, Hur HG. Microbial production and characterization of superparamagnetic magnetite nanoparticles by Shewanella sp. HN-41. J Microbiol Biotechnol. 2008;18:1572–7.

    CAS  PubMed  Google Scholar 

  25. Roh Y, Jang HD, Suh Y. Microbial synthesis of magnetite and Mn substituted magnetite nanoparticles: influence of bacteria and incubation temperature. J Nanosci Nanotechnol. 2007;7:3938–43.

    Article  CAS  PubMed  Google Scholar 

  26. Quester K, Avalos-Borja M, Castro-Longoria E. Biosynthesis and microscopic study of metallic nanoparticles. Micron. 2013;54–55:1–27.

    Article  PubMed  Google Scholar 

  27. Gonzalo J, Serna R, Sol J, Babonneau D, Afonso C. Morphological and interaction effects on the surface plasmon resonance of metal Nanoparticles. J Phys Condens Matter. 2003;15(42):3001–2.

    Article  Google Scholar 

  28. Srivastava SK, Constanti M. Room temperature biogenic synthesis of multiple nanoparticles (Ag, Pd, Fe, Rh, Ni, Ru, Pt, Co, and Li) by Pseudomonas aeruginosa SM1. J Nanopart Res. 2012;14:1–10.

    Article  Google Scholar 

  29. Bharde A, Rautray D, Sarkar I, Seikh M, Sanyal M, Ahmad A, et al. Fungus mediated synthesis of magnetite nanoparticles. Small. 2006;2:135–41.

    Article  CAS  PubMed  Google Scholar 

  30. Lin SY, Wu SH, Chen CH. A simple strategy for prompt visual sensing by gold nanoparticles: general applications of interparticle hydrogen bonds. Angew Chem Int Ed. 2006;45(30):4948–51.

    Article  CAS  Google Scholar 

  31. Mahdavi M, Ahmad MB, Haron MJ, Namvar F, Nadi B, Rahman MZ, Amin J. Synthesis, surface modification and characterization of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules. 2013; 27,18(7):7533–48.

  32. Lin J, Weng X, Dharmarajan R, Chen Z. Characterization and reactivity of iron based nanoparticles synthesized by tea extracts under various atmospheres. Chemosphere. 2016;25(169):413–7.

    Google Scholar 

  33. Bini R, Marques RFC, Santos FJ, Chaker JA, Jafelicci Jr M. Synthesis and functionalization of magnetite nanoparticles with different amino-functional alkoxysilanes. J Magn Magn Mater. 2012;324(4):534–9.

    Article  CAS  Google Scholar 

  34. Wang N, Hsu C, Zhu L, Tseng S, Hsu JP. Influence of metal oxide nanoparticles concentration on their zeta potential. J Colloid Interface Sci. 2013;407:22–8.

    Article  CAS  PubMed  Google Scholar 

  35. Shrivastava S, Bera T, Sunil Singh K, Singh G, Ramachandrarao P, Dash D. Characterization of antiplatelet properties of silver nanoparticles. ACS Nano. 2009;3:1357–64.

    Article  CAS  PubMed  Google Scholar 

  36. Mahdavi M, Namvar F, Ahmad MB, Mohamad R. Green biosynthesis and characterization of magnetic iron oxide (Fe33O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules. 2013;18(5):5954–64.

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

PL Páez and MG Paraje are members of the Research Career of CONICET. KA Crespo is a postdoctoral fellow of CONICET. MA Quinteros is PhD fellow of CONICET. We are also very grateful to Wiener Lab SAIC. This work was supported by the following Grants: SECyT, FONCyT and CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María G. Paraje.

Ethics declarations

Conflicts of Interest

The authors declare that they have not conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crespo, K.A., Baronetti, J.L., Quinteros, M.A. et al. Intra- and Extracellular Biosynthesis and Characterization of Iron Nanoparticles from Prokaryotic Microorganisms with Anticoagulant Activity. Pharm Res 34, 591–598 (2017). https://doi.org/10.1007/s11095-016-2084-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-2084-0

KEY WORDS

Navigation