Skip to main content

Advertisement

Log in

A pH-Sensitive Nanocarrier for Tumor Targeting

Delivery of Ruthenium Complex for Tumor Theranostic by pH-Sensitive Nanocapsule

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Ruthenium complex is a potentially theranostic agent for cancer imaging and therapy, however its application is limited due to poor water-solubility and lack of tumor selectivity. To overcome the above drawbacks, pH-sensitive nanocapsule as a novel targeting carrier was designed to deliver ruthenium complex for treating xenograft tumor of mice.

Methods

The core/shell structured nanocapsule with ruthenium complex tris(1,10-phenanthroline) ruthenium(II) complex (3P-Ru) as the core and a pH-sensitive polymeric material poly (2-diisopropylaminoethyl methacrylate)-block poly(2-aminoethyl methacrylate hydrochloride) (PbPS) as the shell was synthesized and characterized. Meanwhile, the nanocapsule was used to investigate cell viability and evaluate tissue distribution as well as preventing tumor growth efficacy in U251 stem cells tumor-bearing mouse model.

Results

The nanocapsule had a size of 103.1 ± 11.3 nm, zeta potential of -40 ± 5.3 mV, EE of 76.7 ± 0.9%, LE of 25.4 ± 0.6% and it could control drug release under different pH conditions. The results of cell uptake showed that the fluorescent 3P-Ru loaded in the nanocapsule could be delivered into cells with high efficiency, and then significantly inhibited U251 proliferation in a concentration-dependent manner. After U251 stem cells were transplanted subcutaneously into mice, the 3P-Ru/PbPS nanocapsule (PbPS-Ru-NC) via intravenous administration could concentrate in tumor area and obviously prevent tumor growth.

Conclusions

The pH-sensitive nanocapsule as a antitumor agent carrier was able to effectively deliver 3P-Ru into gliomas cells, and cell growth was significantly inhibited both in vitro and in vivo. Such pH-sensitive nanocapsule for ruthenium complex delivery would have great potential application in tumor theranostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

3P-Ru:

Tris(1,10-phenanthroline) ruthenium(II) complex

AFM:

Atomic force microscope

bFGF:

Basic fibroblast growth factor

DMEM-H:

Dulbecco’s Modified Eagle’s Medium (high glucose)

DMSO:

Dimethyl sulfoxide

EE:

Entrapment efficiency

EGF:

Epidermal growth factor

EPR:

Permeability and retention effect

FBS:

Fetal bovine serum

FITC:

Fluorescein isothiocyanate

LE:

Loading efficiency

MTT:

3-(4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide

MWCO:

Molecular weight cut-off

NC:

Nanocapsule

PAMA/SA:

Succinic anhydride modified poly(2-aminoethyl methacrylate hydrochloride)

PbPS:

Poly (2-diisopropylaminoethyl methacrylate) -block poly(2-aminoethyl methacrylate hydrochloride)

PBS:

Phosphate-buffered saline

PDPA:

Poly(2-diisopropylaminoethyl methacrylate)

PEG:

1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] (DSPE-PEG2000-NHS)

SD:

Standard deviation

U251:

Human glioma cells

References

  1. Waldt E, Ahlrichs R, Kappes MM, Schooss D. Structures of medium-sized ruthenium clusters: the octahedral motif. Chem Phys Chem. 2014;15(5):862–5.

    CAS  PubMed  Google Scholar 

  2. Cardoso CR, De AI, Camilo MR, Lima MV, Ito AS, Baptista MS, et al. Synthesis, spectroscopic characterization, photochemical and photophysical properties and biological activities of ruthenium complexes with mono- and bi-dentate histamine ligand. Dalton Trans. 2012;41(22):6726–34.

    Article  CAS  PubMed  Google Scholar 

  3. Kostova I. Ruthenium complexes as anticancer agents. Curr Med Chem. 2006;13(9):1085–107.

    Article  CAS  PubMed  Google Scholar 

  4. Brabec V, Novakova Olga. DNA binding mode of ruthenium complexes and relationship to tumor cell toxicity. Drug resist. Update. 2006;9(3):111–122.

  5. Zhang R, Yu X, Ye Z, Wang G, Zhang W, Yuan J. Turn-on luminescent probe for cysteine/homocysteine based on a ruthenium(II) complex. Inorg Chem. 2010;49(17):7898–903.

    Article  CAS  PubMed  Google Scholar 

  6. Gill MR, Thomas JA. Ruthenium(II) polypyridyl complexes and DNA-from structural probes to cellular imaging and therapeutics. Chem Soc Rev. 2012;41(8):3179–92.

    Article  CAS  PubMed  Google Scholar 

  7. Coggan DZ, Haworth IS, Bates PJ, Robinson A, Rodger A. DNA binding of ruthenium tris(1,10-phenanthroline): evidence for the dependence of binding mode on metal complex concentration. Inorg Chem. 1999;38(20):4486–97.

    Article  CAS  PubMed  Google Scholar 

  8. Cardoso CR, Lima MV, Cheleski J, Peterson EJ, Venâncio T, Farrell NP, et al. Luminescent ruthenium complexes for theranostic applications. J Med Chem. 2014;57(11):4906–15.

    Article  CAS  PubMed  Google Scholar 

  9. Süss-Fink G. Water-soluble arene ruthenium complexes: from serendipity to catalysis and drug design. J Organomet Chem. 2014;751(2):2–19.

    Article  Google Scholar 

  10. Stubbs M, McSheehy PMJ, Griffiths JR, Bashford CL. Causes and consequences of tumor acidity and implications for treatment. Mol Med Today. 2000;6(1):15–9.

    Article  CAS  PubMed  Google Scholar 

  11. Prescott DM, Charles HC, Poulson JM, Page RL, Thrall DE, Vujaskovic Z, et al. The relationship between intracellular and extracellular pH in spontaneous canine tumors. Clin Cancer Res. 2000;6(6):2501–5.

    CAS  PubMed  Google Scholar 

  12. Maeda H, Sawa T, Konno T. Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Release. 2001;74(1):47–61.

    Article  CAS  PubMed  Google Scholar 

  13. Maeda H, Bharate GY, Daruwalla J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm. 2009;71(3):409–19.

    Article  CAS  PubMed  Google Scholar 

  14. Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer. 2003;3(6):401–10.

    Article  CAS  PubMed  Google Scholar 

  15. Van SR, Bhujwalla ZM, Raghunand N, Ballesteros P, Alvarez J, Cerdán S, et al. In vivo imaging of extracellular pH using 1H MRSI. Magn Reson Med. 1999;41(4):743–50.

    Article  Google Scholar 

  16. Cardone RA, Casavola V, Reshkin SJ. The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nat Rev Cancer. 2005;5(10):786–95.

    Article  CAS  PubMed  Google Scholar 

  17. Pourjavadi A, Tehrani ZM, Moghanaki AA. Folate-conjugated pH-responsive nanocarrier designed for active tumor targeting and controlled release of Gemcitabine. Pharm Res. 2016;33(2):417–32.

    Article  CAS  PubMed  Google Scholar 

  18. Tran TH, Ramasamy T, Choi JY. Tumor-targeting, pH-sensitive nanoparticles for docetaxel delivery to drug-resistant cancer cells. Int J Nanomedecine. 2015;10(1):5249–62.

    CAS  Google Scholar 

  19. Zhou Z, Li L, Yang Y, Xu X, Huang Y. Tumor targeting by pH-sensitive, biodegradable, cross-linked N-(2-hydroxypropyl) methacrylamide copolymer micelles. Biomaterials. 2014;35(24):6622–35.

    Article  CAS  PubMed  Google Scholar 

  20. Wu W, Zhang Q, Wang J, Chen M, Li S, Lin Z, et al. Tumor-targeted aggregation of pH-sensitive nanocarriers for enhanced retention and rapid intracellular drug release. Polym Chem. 2014;5(19):5668–79.

    Article  CAS  Google Scholar 

  21. Wang Q, Wang Z, Chu L, Li X, Kan P, Xin X, et al. The effects and molecular mechanisms of MiR-106a in multidrug resistance reversal in human glioma U87/DDP and U251/G cell lines. PLoS One. 2015;10(5), e0125473.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Li T, Fu C, Liu Z, Guo S, Liu Z, Wen TB. Half-Sandwich B-Oxy Boratabenzene ruthenium complexes: synthesis, characterization, and reactivity of (η6-C5H5BOR)RuCl(PPh3)2 (R = Et, Me). Organometallics. 2015;34(13):3292–302.

    Article  CAS  Google Scholar 

  23. Gao Y, Chao Z, Zhou Y, Li J, Lei Z, Li Y, et al. Endosomal pH-responsive polymer-based dual-ligand-modified micellar nanoparticles for tumor targeted delivery and facilitated intracellular release of paclitaxel. Pharm Res. 2015;32(8):2649–62.

    CAS  PubMed  Google Scholar 

  24. Kastantin M, Missirlis D, Black M, Ananthanarayanan B, Peters D, Tirrell M. Thermodynamic and kinetic stability of DSPE-PEG(2000) micelles in the presence of bovine serum albumin. J Phys Chem B. 2010;114(39):12632–40.

    Article  CAS  PubMed  Google Scholar 

  25. Cesur H, Rubinstein I, Pai A, Önyüksel H. Self-associated indisulam in phospholipid-based nanomicelles: a potential nanomedicine for cancer. Nanomed-Nanotechnol. 2009;5(2):178–83.

    Article  CAS  Google Scholar 

  26. Hua S. Comparison of in vitro dialysis release methods of loperamide-encapsulated liposomal gel for topical drug delivery. Int J Nanomedicine. 2014;9(1):735–44.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Xu P, Qiu M, Zhang Z, Kang C, Jiang R, Jia Z, et al. The oncogenic roles of Notch1 in astrocytic gliomas in vitro and in vivo. J Neuro-Oncol. 2010;97(1):41–51.

    Article  CAS  Google Scholar 

  28. Bouskila A, Amouyal E, Verchère-Béaur C, Sasaki I, Gaudemer A. Mononuclear and binuclear ruthenium(II) heteroleptic complexes based on 1,10-phenanthroline ligands. Part II: spectroscopic and photophysical study in the presence of DNA. J Photochem Photobiol B. 2004;76(1-3):69–83.

    Article  CAS  PubMed  Google Scholar 

  29. Ruzzaa A, Vespignania R, Khoynezhada A, Bercic G, De Robertisa M, Trentoa A, et al. Concomitant dual intravascular and subcutaneous microsurgical implantation of xenograft tissue in a rodent model for evaluation of structural degeneration. Transplant Proc. 2013;45(2):735–40.

    Article  Google Scholar 

  30. Danhier F, Feron O, Preat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release. 2010;148(2):135–46.

    Article  CAS  PubMed  Google Scholar 

  31. Linton SS, Sherwood SG, Drews KC, Kester M. Targeting cancer cells in the tumor microenvironment: opportunities and challenges in combinatorial nanomedicine. Wires Nanomed Nanobiol. 2016;8(2):208–22.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

This work was supported by grants from the Natural Science Foundation of China (81273416); the Scientific Research Foundation for Returned Scholars, Ministry of Education of China (2012-940), the Fundamental Research Funds for the Central Universities (XDJK2013A030); and the New Century Excellent Talents in University Award, Ministry of Education of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ailing Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Fu, C., Deng, Y. et al. A pH-Sensitive Nanocarrier for Tumor Targeting. Pharm Res 33, 2989–2998 (2016). https://doi.org/10.1007/s11095-016-2021-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-2021-2

KEY WORDS

Navigation