Skip to main content
Log in

Drug Disposition Classification Systems in Discovery and Development: A Comparative Review of the BDDCS, ECCS and ECCCS Concepts

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

BDDCS, ECCS and ECCCS are compound disposition classification concepts that aim to streamline, de-risk and speed-up drug development. Although all three systems have the same purpose and are based on classifying drugs into four main categories, they have different backgrounds and contrast in their criteria. Here the details, differences and most important applications of the three systems are reviewed with particular emphasis of their roles for drug discovery and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BCS:

Biopharmaceutics classification system

BDDCS:

Biopharmaceutics drug disposition classification system

CLint,h :

Total hepatic intrinsic clearance

CLint,met :

Intrinsic metabolic clearance

CLint,sec :

Intrinsic biliary clearance

CLint,tot :

Total intrinsic clearance by metabolism and biliary excretion

CYP:

Cytochrome P450

D:

Clinical dose

DDI:

Drug-drug interaction

ECCS:

Extended clearance classification system

ECCCS:

EC3S extended clearance concept classification system

ECM:

Extended clearance model

fnh :

Fraction of hepatic elimination

fnmet :

Fraction of metabolic elimination

[I]u :

Unbound inhibitor concentration

IVIVC:

In vitro-in vivo correlation

IVIVE:

In vitro-in vivo extrapolation

Ki :

Inhibition constant

Kpuu :

Unbound liver-to-capillary blood concentration ratio

LLC-PK1:

Porcine kidney proximal tubule cell line

LogP:

Octanol-water partition coefficient or lipophilicity

MDCK-LE:

Canine kidney low efflux cell line

MW:

Molecular weight

OATP:

Organic anion transporting polypeptide

Qh :

Hepatic blood flow

PAMPA:

Parallel artificial membrane permeability assay

PCA:

Principal component analysis

Permpas :

Passive intestinal permeability

PK:

Pharmacokinetics

PSeff :

Sinusoidal efflux clearance or membrane permeability

PSinf,act :

Sinusoidal influx clearance or membrane permeability by active uptake

PSinf,pas :

Sinusoidal influx clearance or membrane permeability by passive diffusion

PSinf,tot :

Total sinusoidal influx clearance or membrane permeability

REFERENCES

  1. Wu CY, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a Biopharmaceutics Drug Disposition Classification System. Pharm Res. 2005;22:11–23.

    Article  CAS  PubMed  Google Scholar 

  2. Benet LZ. The role of BCS (Biopharmaceutics Classification System) and BDDCS (Biopharmaceutics Drug Dispostion Classification Systen) in Drug Development. J Pharm Sci. 2013;102:34–42.

    Article  CAS  PubMed  Google Scholar 

  3. Camenisch G, Umehara K. Predicting human hepatic clearance from in vitro drug metabolism and transport data: a scientific and pharmaceutical perspective for assessing drug-drug interactions. Biopharm Drug Dispos. 2012;33:179–94.

    Article  CAS  PubMed  Google Scholar 

  4. Kunze A, Huwyler J, Poller B, Gutmann H, Camenisch G. In vitro-in vivo extrapolation method to predict human renal clearance of drugs. J Pharm Sci. 2014;103:994–1001.

    Article  CAS  PubMed  Google Scholar 

  5. Kunze A, Poller B, Huwyler J, Camenisch G. Application of the extended clearance concept classification system (EC3S) to predict the victim drug-drug interaction potential of statins. Drug Metab Pers Ther. 2015;30:175–88.

    CAS  PubMed  Google Scholar 

  6. Camenisch G, Riede J, Kunze A, Huwyler J, Poller B, Umehara K. The extended clearance model and its use for the interpretation of hepatobiliary elimination data. ADMET & DMPK. 2015;3:1–14.

    Article  Google Scholar 

  7. Varma MV, Steyn S, Allerton C, El-Kattan A. Predicting clearance mechanism in drug discovery: extended clearance classification system (ECCS). Pharm Res. 2015;32:3785–802.

    Article  CAS  PubMed  Google Scholar 

  8. Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a Biopharmaceutic Drug Classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12:413–20.

    Article  CAS  PubMed  Google Scholar 

  9. Sakore S, Chakraborty B. In vitro-in vivo correlation (IVIVC): a strategic tool in drug development. Pharm Res. 2011;S3:1–12.

    Google Scholar 

  10. Chen ML, Amidon GL, Benet LZ, Lennernas H, Yu LX. The BCS, BDDCS, and regulatory guidances. Pharm Res. 2011;28:1774–8.

    Article  CAS  PubMed  Google Scholar 

  11. Shugarts S, Benet LZ. The role of transporters in the pharmacokinetics of orally administered drugs. Pharm Res. 2009;26:2039–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Benet LZ, Broccatelli F, Oprea TI. BDDCS applied to over 900 drugs. AAPS J. 2011;31:519–47.

    Article  Google Scholar 

  13. Fagerholm U. The role of permeability in drug ADME/PK, interactions and toxicity-presentation of a permeability-based classification system (PCS) for prediction of ADME/PK in humans. Pharm Res. 2008;25:625–38.

    Article  CAS  PubMed  Google Scholar 

  14. Benet LZ, Amidon GL, Barends DM, Lennernas H, Polli JE, Shah VP. The use of BDDCS in classifying the permeability of marketed drugs. Pharm Res. 2008;25:483–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hosey CM, Benet LZ. Predicting the extent of metabolism using in vitro permeability rate measurements and in silico permeability rate predictions. Mol Pharm. 2015;12:1456–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Broccatelli F, Cruciani G, Benet LZ, Oprea TI. BDDCS class prediction for new molecular entities. Mol Pharm. 2012;9:570–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Niemi M, Pasan MK, Neuvonen PJ. SLCO1B1 polymorphism and sex affect the pharmacokinetics of pravastatin but not fluvastatin. Clin Pharmacol Ther. 2006;80:356–66.

    Article  CAS  PubMed  Google Scholar 

  18. Benet LZ, Hosey CM, Ursu O, Oprea TI. BDDCS, the rule of 5 and drugability. Adv Drug Del Rev. 2016;1001:89–98.

    Article  Google Scholar 

  19. Umehara K, Camenisch G. Novel in vitro-in vivo extrapolation (IVIVE) method to predict hepatic organ clearance in rat. Pharm Res. 2012;29:603–17.

    Article  CAS  PubMed  Google Scholar 

  20. Riede J, Poller B, Umehara K, Huwyler J, Camenisch G. New IVIVE method for the prediction of total human clearance and relative elimination pathway contributions from in vitro hepatocyte and microsomal data. Eur J Pharm Sci. 2016;30:96–102.

    Article  Google Scholar 

  21. Camenisch G, Alsenz J, van de Waterbeemd H, Folkers G. Estimation of permeability by passive diffusion through Caco-2 cell monolayers using the drug’s lipophilicity and molecular weight. Eur J Pharm Sci. 1998;6:313–9.

    Article  CAS  Google Scholar 

  22. Camenisch G, Folkers G, van de Waterbeemd H. Shapes of membrane permeability-lipophilicity curves: extension of theoretical models with an aqueous pore pathway. Eur J Pharm Sci. 1998;6:321–9.

    Article  CAS  Google Scholar 

  23. Lennernäs H. Clinical pharmacokinetics of atorvastatin. Clin Pharmacokinet. 2003;42:1141–60.

    Article  PubMed  Google Scholar 

  24. Le Couteur DG, Martin PT, Pond SM, Bracs P, Black A, Hayes R, et al. Metabolism and excretion of 14C atovastatin in patients with T-tube drainage. Proc Aust Soc Clin Exp Pharmacol Toxicol. 1996;3:153.

    Google Scholar 

  25. Hosey CM, Broccatelli F, Benet LZ. Predicting when biliary excretion of parent dug is a major route of elimination in humans. AAPS J. 2014;16:1085–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lombardo F, Obach RS, Varma MV, Stringer R, Berellini G. Clearance mechanism assignment and total clearance prediction in human based upon in silico models. J Med Chem. 2014;57:4397–405.

    Article  CAS  PubMed  Google Scholar 

  27. Espie P, Tytgat D, Sargentini-Maier M, Poggesis I, Watelet J. Physiologically based pharmacokinetics (PBPK). Drug Metab Rev. 2009;41:391–407.

    Article  CAS  PubMed  Google Scholar 

  28. Hosey CM, Chan R, Benet LZ. BDDCS predictions, self-correcting aspects of BDDCS assignments, BDDCS assignment corrections, and classification for more than 175 additional drugs. AAPS J. 2016;18:251–260.

  29. Dave RA, Morris ME. Quantitative structure-pharmacokinetic relationships for the prediction of renal clearance in humans. Drug Metab Dispos. 2015;43:73–81.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Varma MV, Feng B, Obach RS, Troutman MD, Chupka J, Miller HR, et al. Physicochemical determinants of human renal clearance. J Med Chem. 2009;52:4844–52.

    Article  CAS  PubMed  Google Scholar 

  31. Shitara Y, Maeda K, Ikejiri K, Yoshida K, Horie T, Sugiyama Y. Clinical significance of organic anion transporting polypeptides (OATPs) in drug disposition: their roles in hepatic clearance and intestinal absorption. Biopharm Drug Dispos. 2013;34:45–78.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The author does not have any conflict of interest to report and is very appreciative of the outstanding students, postdoctoral fellows and scientific collaborators who contributed developing the concepts of BDDCS, ECCS as well as EC3S and their roles in drug discovery and development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gian P. Camenisch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camenisch, G.P. Drug Disposition Classification Systems in Discovery and Development: A Comparative Review of the BDDCS, ECCS and ECCCS Concepts. Pharm Res 33, 2583–2593 (2016). https://doi.org/10.1007/s11095-016-2001-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-2001-6

KEY WORDS

Navigation