Skip to main content
Log in

Local, Controlled Delivery of Local Anesthetics In Vivo from Polymer - Xerogel Composites

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Polymer-xerogel composite materials have been introduced to better optimize local anesthetics release kinetics for the pain management. In a previous study, it was shown that by adjusting various compositional and nano-structural properties of both inorganic xerogels and polymers, zero-order release kinetics over 7 days can be achieved in vitro. In this study, in vitro release properties are confirmed in vivo using a model that tests for actual functionality of the released local anesthetics.

Methods

Composite materials made with tyrosine-polyethylene glycol(PEG)-derived poly(ether carbonate) copolymers and silica-based sol–gel (xerogel) were synthesized. The in vivo release from the composite controlled release materials was demonstrated by local anesthetics delivery in a rat incisional pain model.

Results

The tactile allodynia resulting from incision was significantly attenuated in rats receiving drug-containing composites compared with the control and sham groups for the duration during which natural healing had not yet taken place. The concentration of drug (bupivacaine) in blood is dose dependent and maintained stable up to 120 h post-surgery, the longest time point measured.

Conclusions

These in vivo studies show that polymer-xerogel composite materials with controlled release properties represent a promising class of controlled release materials for pain management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance BP bupivacaine

DI:

De-ionized water

DTO:

Desaminotyrosyl tyrosine octyl ester

FTIR:

Fourier transform infrared spectroscopy

GPC:

Gel permeation chromatography

HCl:

Hydrochloride acid

HPLC:

High performance liquid chromatography

MP:

Mepivacaine

NMR:

Nuclear magnetic resonance

PEG:

Polyethylene glycol

TEOS:

Tetraethoxysilane

THF:

Tetrahydrofuran

TFA:

Trifluoroacetic acid

References

  1. Fletcher S. Catheter-related bloodstream infection. Continuing education in Anaesthesia. Critical Care Pain. 2005;5:49–51.

    Google Scholar 

  2. Curley J, Castillo J, Hotz J, Uezono M, Hernandez S, Lim JO, et al. Prolonged regional nerve blockade. Injectable biodegradable bupivacaine/polyester microspheres. Anesthesiology. 1996;84:1401–10.

    Article  CAS  PubMed  Google Scholar 

  3. Thakur RA, Florek CA, Kohn J, Michniak BB. Electrospun nanofibrous polymeric scaffold with targeted drug release profiles for potential application as wound dressing. Int J Pharm. 2008;364:87–93.

    Article  CAS  PubMed  Google Scholar 

  4. Shikanov A, Domb AJ, Weiniger CF. Long acting local anesthetic-polymer formulation to prolong the effect of analgesia. J Control Release. 2007;117:97–103.

    Article  CAS  PubMed  Google Scholar 

  5. Weiniger CF, Golovanevski L, Domb AJ, Ickowicz D. Extended release formulations for local anaesthetic agents. Anaesthesia. 2012;67:906–16.

    Article  CAS  PubMed  Google Scholar 

  6. Ohri R, Wang JC-F, Blaskovich PD, Pham LN, Costa DS, Nichols GA, et al. Inhibition by local bupivacaine-releasing microspheres of acute postoperative pain from hairy skin incision. Anesthesia Analgesia. 2013;117:717–30.

    Article  CAS  PubMed  Google Scholar 

  7. Weldon CB, Tsui JH, Shankarappa SA, Nguyen VT, Ma M, Anderson DG, et al. Electrospun drug-eluting sutures for local anesthesia. J Control Release. 2012;161:903–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Foley PL, Ulery BD, Kan HM, Burks MV, Cui Z, Wu Q, et al. A chitosan thermogel for delivery of ropivacaine in regional musculoskeletal anesthesia. Biomaterials. 2013;34:2539–46.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang Y, Brown K, Siebenaler K, Determan A, Dohmeier D, Hansen K. Development of lidocaine-coated microneedle product for rapid, safe, and prolonged local analgesic action. Pharm Res. 2012;29:170–7.

    Article  PubMed  Google Scholar 

  10. Loke W-K, Lau S-K, Yong LL, Khor E, Sum CK. Wound dressing with sustained anti-microbial capability. J Biomed Mater Res. 2000;53:8–17.

    Article  CAS  PubMed  Google Scholar 

  11. Mi F-L, Wu Y-B, Shyu S-S, Schoung J-Y, Huang Y-B, Tsai Y-H, et al. Control of wound infections using a bilayer chitosan wound dressing with sustainable antibiotic delivery. J Biomed Mater Res. 2002;59:438–49.

    Article  CAS  PubMed  Google Scholar 

  12. Lin S-Y, Chen K-S, Run-Chu L. Design and evaluation of drug-loaded wound dressing having thermoresponsive, adhesive, absorptive and easy peeling properties. Biomaterials. 2001;22:2999–3004.

    Article  CAS  PubMed  Google Scholar 

  13. Skolnikand A, Gan TJ. New formulations of bupivacaine for the treatment of postoperative pain: liposomal bupivacaine and SABER-Bupivacaine. Expert Opin Pharmacother. 2014;15:1535–42.

    Article  Google Scholar 

  14. Schnieders J, Gbureck U, Thull R, Kissel T. Controlled release of gentamicin from calcium phosphate-poly(lactic acid-co-glycolic acid) composite bone cement. Biomaterials. 2006;27:4239–49.

    Article  CAS  PubMed  Google Scholar 

  15. Zhangand Y, Zhang M. Calcium phosphate/chitosan composite scaffolds for controlled in vitro antibiotic drug release. J Biomed Mater Res. 2002;62:378–86.

    Article  Google Scholar 

  16. Xueand JM, Shi M. PLGA/mesoporous silica hybrid structure for controlled drug release. J Control Release. 2004;98:209–17.

    Article  Google Scholar 

  17. Costache MC, Qu H, Ducheyne P, Devore DI. Polymer-xerogel composites for controlled release wound dressings. Biomaterials. 2010;31:6336–43.

    Article  CAS  PubMed  Google Scholar 

  18. Bourkeand SL, Kohn J. Polymers derived from the amino acid -tyrosine: polycarbonates, polyarylates and copolymers with poly(ethylene glycol). Adv Drug Deliv Rev. 2003;55:447–66.

    Article  Google Scholar 

  19. Lai W, Garino J, Ducheyne P. Silicon excretion from bioactive glass implanted in rabbit bone. Biomaterials. 2002;23:213–7.

    Article  CAS  PubMed  Google Scholar 

  20. Radin S, El-Bassyouni G, Vresilovic EJ, Schepers E, Ducheyne P. In vivo tissue response to resorbable silica xerogels as controlled-release materials. Biomaterials. 2005;26:1043–52.

    Article  CAS  PubMed  Google Scholar 

  21. Brennan TJ, Vandermeulen EP, Gebhart GF. Characterization of a rat model of incisional pain. Pain. 1996;64:493–501.

    Article  CAS  PubMed  Google Scholar 

  22. Brennan TJ, Zahn PK, Pogatzki-Zahn EM. Mechanisms of incisional pain. Anesthesiology Clinics North Am. 2005;23:1–20.

    Article  CAS  Google Scholar 

  23. Brennan TJ, Umali EF, Zahn PK. Comparison of pre- versus post-incision administration of intrathecal bupivacaine and intrathecal morphine in a rat model of postoperative pain. Anesthesiology. 1997;87:1517–28.

    Article  CAS  PubMed  Google Scholar 

  24. Yuand C, Kohn J. Tyrosine-PEG-derived poly(ether carbonate)s as new biomaterials: Part I: synthesis and evaluation. Biomaterials. 1999;20:253–64.

    Article  Google Scholar 

  25. Pulapuraand S, Kohn J. Tyrosine-derived polycarbonates: backbone-modified “pseudo”-poly(amino acids) designed for biomedical applications. Biopolymers. 1992;32:411–7.

    Article  Google Scholar 

  26. Radin S, Ducheyne P, Kamplain T, Tan BH. Silica sol–gel for the controlled release of antibiotics. I. Synthesis, characterization, and in vitro release. J Biomed Mater Res. 2001;57:313–20.

    Article  CAS  PubMed  Google Scholar 

  27. Proceedings of the International Conference on Harmonization (ICH), Topic Q2B: Validation of analytical procedures: methodology, Int Conf Harmonization (ICH), 1996.

  28. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods. 1994;53:55–63.

    Article  CAS  PubMed  Google Scholar 

  29. Masters DB, Berde CB, Dutta SK, Griggs CT, Hu D, Kupsky W, et al. Prolonged regional nerve blockade by controlled release of local anesthetic from a biodegradable polymer matrix. Anesthesiology. 1993;79:340–6.

    Article  CAS  PubMed  Google Scholar 

  30. Qu H, Radin S, Ducheyne P. Release kinetics from porous xerogels determined by sol–gel synthesis, porous nanostructure and immersion. Adv Biomaterials Devices Med. 2014;1:11–7.

    Google Scholar 

  31. Qu H, Costache MC, Inan S, Cowan A, Devore D, Ducheyne P. Polymer - xerogel composites for controlled release wound dressings: a rat incisional pain model study. Seattle: Society For Biomaterials 2010 Annual Meeting; 2010.

    Google Scholar 

  32. Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, et al. DrugBank 3.0: a comprehensive resource for ‘Omics’ research on drugs. Nucleic Acids Res. 2011;39:D1035–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Kim J, Magno MHR, Waters H, Doll BA, McBride S, Alvarez P, Darr A, Vasanji A, Kohn J, Hollinger JO. Bone regeneration in a rabbit critical-sized calvarial model using tyrosine-derived polycarbonate Scaffolds. Tissue Eng Part A (2012).

  34. Finnie K, Waller D, Perret F, Krause-Heuer A, Lin H, Hanna J, et al. Biodegradability of sol–gel silica microparticles for drug delivery. J Sol-Gel Sci Technol. 2009;49:12–8.

    Article  CAS  Google Scholar 

  35. Rosenberg PH, Veering BT, Urmey WF. Maximum recommended doses of local anesthetics: a multifactorial concept. Regional Anesthesia Pain Med. 2004;29:564–75.

    CAS  Google Scholar 

  36. Kopacz DJ, Bernards CM, Allen HW, Landau C, Nandy P, Wu D, et al. A model to evaluate the pharmacokinetic and pharmacodynamic variables of extended-release products using in vivo tissue microdialysis in humans: bupivacaine-loaded microcapsules. Anesth Analg. 2003;97:124–31.

    Article  CAS  PubMed  Google Scholar 

  37. Pogatzki EM, Vandermeulen EP, Brennan TJ. Effect of plantar local anesthetic injection on dorsal horn neuron activity and pain behaviors caused by incision. Pain. 2002;97:151–61.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

This work was supported by U.S. Army contract #W81XWH-07-1-0438. The U.S. Army Medical Research Acquisition Activity, 820 Chandler Street, Fort Detrick MD 21702–5014 is the awarding and administering acquisition office. The content of the manuscript does not necessarily reflect the position or the policy of the Government, and no official endorsement should be inferred.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Ducheyne.

Additional information

Disclaimer

“The opinions or assertions contained herein are the private views of the author and are not to be construed as official or as reflecting the views of the Department of the Army or the Department of Defense.”

Haibo Qu and Marius C. Costache contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, H., Costache, M.C., Inan, S. et al. Local, Controlled Delivery of Local Anesthetics In Vivo from Polymer - Xerogel Composites. Pharm Res 33, 729–738 (2016). https://doi.org/10.1007/s11095-015-1822-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1822-z

KEY WORDS

Navigation