Skip to main content
Log in

Biodistribution and Toxicity of X-Ray Iodinated Contrast Agent in Nano-emulsions in Function of Their Size

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to investigate the impact of the size of X-ray iodinated contrast agent in nano-emulsions, on their toxicity and fate in vivo.

Methods

A new compound, triiodobenzoate cholecalciferol, was synthetized, formulated as nano-emulsions, and followed after i.v. administration in mice by X-ray imaging (micro computed tomography). Physicochemical characterization and process optimization allowed identifying a good compromise between X-ray contrasting properties, monodispersity and stability. This also allowed selecting two formulations with different sizes, hydrodynamic diameters of 55 and 100 nm, but exactly the same composition. In vitro experiments were performed on two cell lines, namely hepatocytes (BNL-CL2) and macrophages (RAW264.7).

Results

Cell viability studies, cell uptake observations by confocal microscopy, and uptake quantification by fluorimetry, disclosed clear differences between two formulations, as well as between two types of cell lines. After i.v. injection of the two iodinated nano-emulsions in mice, CT scans provided the quantification of the pharmacokinetics and biodistributions. We finally showed that the size in the nano-emulsions has not a real impact on the pharmacokinetics and biodistributions, but has a strong influence on their toxicity, corroborating the in vitro results.

Conclusions

This study shows that the size of the nanocarrier significantly matters, likely due to highly different interactions with cells and tissues.

A study on the effect of the size of cholecciferol nano-emulsions, on their in vivo becoming, through X-ray imaging modality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

CDCl3 :

Deuterated chloroform

CT:

Computed tomography

DCC:

N,N′-dicyclohexylcarbodiimide

DLS:

Dynamic light scattering

DMAP:

4-dimethylaminopyridine

DMEM:

Dulbecco’s modified Eagle medium

DMSO:

Dimethyl sulfoxide

EPR:

Enhanced permeation and retention

FBS:

Fetal bovine serum

HBSS:

Hank’s balanced salt solution

microCT:

Micro computed tomography

MRI:

Magnetic resonance imaging

MTT:

3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NPs:

Nanoparticles

OR:

Oil ratio

PBS:

Phosphate buffered saline

PDI:

Polydispersity index

PEG:

Polyethyleneglycol

PET:

Positron emission tomography

RES:

Reticuloendothelial system

SOR:

Surfactant / (surfactant + oil) weight ratio

SOWR:

(surfactant + oil) / (surfactant + oil + water) weight ratio

SPECT:

Single photon emission computed tomography

TIBA:

2,3,5-Triiodobenzoic acid

TMS:

Tetramethylsilane

References

  1. Patel HM. Serum opsonins and liposomes: their interaction and opsonophagocytosis. Crit Rev Ther Drug Carrier Syst. 1992;9:39–90.

    CAS  PubMed  Google Scholar 

  2. Chonn A, Semple SC, Cullis PR. Association of blood proteins with large unilamellar liposomes in vivo. J Biol Chem. 1992;267:18759–65.

    CAS  PubMed  Google Scholar 

  3. Patil S, Gawali S, Patil S, Basu S. Synthesis, characterization and in vitro evaluation of novel vitamin D3 nanoparticles as a versatile platform for drug delivery in cancer therapy. J Mater Chem B. 2013;1:5742–50.

    Article  CAS  Google Scholar 

  4. Zhang G, Yang Z, Lu W, Zhang R, Huang Q, Tian M, et al. Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice. Biomaterials. 2009;30:1928–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNei SE. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev. 2009;61:428–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Antonand N, Vandamme TF. Nanotechnology for computed tomography: a real potential recently disclosed. Pharm Res. 2014;31:20–34.

    Article  Google Scholar 

  7. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65:271–84.

    Article  CAS  PubMed  Google Scholar 

  8. Hirsjärvi S, Dufort S, Bastiat G, Saulnier P, Passirani C, Coll J-L, et al. Surface modification of lipid nanocapsules with polysaccharides: from physicochemical characteristics to in vivo aspects. Acta Biomater. 2013;9:6686–93.

    Article  PubMed  Google Scholar 

  9. Hallouard F, Anton N, Choquet P, Constantinesco A, Vandamme TF. Iodinated blood pool contrast media for preclinical X-ray imaging applications – a review. Biomaterials. 2010;31:6249–68.

    Article  CAS  PubMed  Google Scholar 

  10. Li X, Anton N, Zuber G, Vandamme TF. Contrast agents for preclinical targeted X-ray imaging. Adv Drug Deliv Rev. 2014;76:116–33.

    Article  CAS  PubMed  Google Scholar 

  11. Attia MF, Anton N, Chiper M, Akasov R, Anton H, Messaddeq N, et al. Biodistribution of X-ray iodinated contrast agent in nano-emulsions is controlled by the chemical nature of the oily core. ACS Nano. 2014;8:10537–50.

    Article  CAS  PubMed  Google Scholar 

  12. Holick MF, Tian XQ, Allen M. Evolutionary importance for the membrane enhancement of the production of vitamin D3 in the skin of poikilothermic animals. Proc Natl Acad Sci U S A. 1995;92:3124–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. MacLaughlin JA, Anderson RR, Holick MF. Spectral character of sunlight modulates photosynthesis of previtamin D3 and its photoisomers in human skin. Science. 1982;216:1001–3.

    Article  CAS  PubMed  Google Scholar 

  14. Porter CJH, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov. 2007;6:231–48.

    Article  CAS  PubMed  Google Scholar 

  15. Holickand MF, Garabedian M. Vitamin D: photobiology, metabolism, mechanism of action, and clinical applications. In: Favus MJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. Washington: American Society for Bone and Mineral Research; 2006. p. 129–37.

    Google Scholar 

  16. Holick MF. Phylogenetic and evolutionary aspects of vitamin D from phytoplankton to humans. In: Pangand PKT, Schreibman MP, editors. Vertebrate endocrinology: fundamentals and biomedical implications. San Diego: Academic Press, Inc.; 1989.

    Google Scholar 

  17. Holick MF. Physiology, molecular biology, and clinical applications. In: Holick MF, editor. Vitamin D and Health: evolution, biologic functions, and recommended dietary intakes for vitamin D. Totowa: Humana Press Inc.; 2009. p. 3–35.

    Google Scholar 

  18. Khlebtsovand N, Dykman L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev. 2011;40:1647–71.

    Article  Google Scholar 

  19. Oberdörster G, Oberdörster E, Oberdörster J. Concepts of nanoparticle dose metric and response metric. Environ Health Perspect. 2007;115:A290–4.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Fadeelaand B, Garcia-Bennett AE. Better safe than sorry: understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv Drug Deliv Rev. 2010;62:362–74.

    Article  Google Scholar 

  21. Chono S, Tanino T, Seki T, Morimoto K. Uptake characteristics of liposomes by rat alveolar macrophages: influence of particle size and surface mannose modification. J Pharm Pharmacol. 2007;59:75–80.

    Article  CAS  PubMed  Google Scholar 

  22. Osaki F, Kanamori T, Sando S, Sera T, Aoyama Y. A quantum dot conjugated sugar ball and its cellular uptake. On the size effects of endocytosis in the subviral region. J Am Chem Soc. 2004;126:6520–1.

    Article  CAS  PubMed  Google Scholar 

  23. Winand KY, Feng S-S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials. 2005;26:2713–22.

    Article  Google Scholar 

  24. Foged C, Brodin B, Frokjaera S, Sundbladb A. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int J Pharm. 2005;298:315–22.

    Article  CAS  PubMed  Google Scholar 

  25. Chithrani BD, Ghazani AA, Chan WCW. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006;6:662–8.

    Article  CAS  PubMed  Google Scholar 

  26. Lu F, Wu S-H, Hung Y, Mou C-Y. Size effect on cell uptake in well-suspended. Uniform mesoporous silica nanoparticles. Small. 2009;5:1408–13.

    Article  CAS  PubMed  Google Scholar 

  27. Lee K-D, Nir S, Papahadjopoulos D. Quantitative analysis of liposome-cell interactions in vitro: rate constants of binding and endocytosis with suspension and adherent J774 cells and human monocytes. Biochemistry. 1993;32:889–99.

    Article  CAS  PubMed  Google Scholar 

  28. Szebeni J, Muggia FM, Alving CR. Complement activation by cremophor EL as a possible contributor to hypersensitivity to paclitaxel: an in vitro study. J Natl Cancer Inst. 1998;90:300–6.

    Article  CAS  PubMed  Google Scholar 

  29. Anton N, Benoit J-P, Saulnier P. Design and production of nanoparticles formulated from nano-emulsion templates—a review. J Control Release. 2008;128:185–99.

    Article  CAS  PubMed  Google Scholar 

  30. Anton N, Gayet P, Benoit J-P, Saulnier P. Nano-emulsions and nanocapsules by the PIT method: an investigation on the role of the temperature cycling on the emulsion phase inversion. Int J Pharm. 2007;344:44–52.

    Article  CAS  PubMed  Google Scholar 

  31. Antonand N, Vandamme TF. The universality of low-energy nano-emulsification. Int J Pharm. 2009;377:142–7.

    Article  Google Scholar 

  32. Klymchenko AS, Roger E, Anton N, Anton H, Shulov I, Vermot J, et al. Highly lipophilic fluorescent dyes in nano-emulsions: towards bright nonleaking nano-droplets. RSC Adv. 2012;2:11876–86.

    Article  CAS  Google Scholar 

  33. Li X, Anton N, Zuber G, Zhao M, Messaddeq N, Hallouard F, et al. Iodinated α-tocopherol nano-emulsions as non-toxic contrast agents for preclinical X-ray imaging. Biomaterials. 2013;34:481–91.

    Article  PubMed  Google Scholar 

  34. Vonarbourg A, Passirani C, Saulnier P, Simard P, Leroux JC, Benoit JP. Evaluation of pegylated lipid nanocapsules versus complement system activation and macrophage uptake. J Biomed Mater Res A. 2006;78:620–8.

    Article  CAS  PubMed  Google Scholar 

  35. Ohand N, Park JH. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int J Nanomedicine. 2014;9:51–3.

    Google Scholar 

  36. Shang L, Nienhaus K, Nienhaus GU. Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnol. 2014;12:1–11.

    Article  Google Scholar 

  37. Xu A, Yao M, Xu G, Ying J, Ma W, Li B, et al. A physical model for the size-dependent cellular uptake of nanoparticles modified with cationic surfactants. Int J Nanomedicine. 2012;7:3547–54.

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Willekens I, Lahoutte T, Buls N, Vanhove C, Deklerck R, Bossuyt A, et al. Time-course of contrast enhancement in spleen and liver with Exia 160, Fenestra LC, and VC. Mol Imaging Biol. 2009;11:128–35.

    Article  PubMed  Google Scholar 

  39. Nebuloni L, Kuhn GA, Müller R. A comparative analysis of water-soluble and blood-pool contrast agents for in vivo vascular imaging with micro-CT. Acad Radiol. 2013;20:1247–55.

    Article  PubMed  Google Scholar 

  40. Boll H, Nittka S, Doyon F, Neumaier M, Marx A, Kramer M, et al. Micro-CT based experimental liver imaging using a nanoparticulate contrast agent: a longitudinal study in mice. PLoS ONE. 2011;6:e25692.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Hallouard F, Briançon S, Anton N, Li X, Vandamme TF, Fessi H. Influence of diblock co-polymer PCL-mPEG and of various iodinated oils on the formulation by the emulsion-diffusion process of radiopaque polymeric nanoparticles. J Pharm Sci. 2013;102:4150–8.

    Article  CAS  PubMed  Google Scholar 

  42. Hallouard F, Briançon S, Anton N, Li X, Vandamme TF, Fessi H. Iodinated nano-emulsions as contrast agents for preclinical X-ray imaging, impact of the free surfactants on the pharmacokinetics. Eur J Pharm Biopharm. 2013;83:54–62.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors would like to thank for grant “Attractivité IDEX 2013” within University of Strasbourg, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Anton.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 7045 kb)

ESM 2

(MOV 55733 kb)

ESM 3

(MOV 58154 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attia, M.F., Anton, N., Akasov, R. et al. Biodistribution and Toxicity of X-Ray Iodinated Contrast Agent in Nano-emulsions in Function of Their Size. Pharm Res 33, 603–614 (2016). https://doi.org/10.1007/s11095-015-1813-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1813-0

KEY WORDS

Navigation