Skip to main content

Advertisement

Log in

Curcumin Nanoparticles Attenuate Production of Pro-inflammatory Markers in Lipopolysaccharide-Induced Macrophages

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The surface charge of nanoparticles is an important factor that controls efficiency and cellular uptake. The aim of this study was to investigate the efficacy of curcumin nanoparticles (Cur-NPs) with different surface charges, in terms of toxicity, internalization, anti-inflammatory and anti-oxidant activities towards alveolar macrophages cells.

Methods

The surface charge of curcumin nanoparticles (positive, negative and neutral), with an average diameter of 30 nm, were synthesized and characterized. Polyvinyl-alcohol, polyvinylpyrrolidone and dextran were used as coatings to confer negative, positive and neutral charges. The synthesized Cur-NPs were evaluated for particle size, encapsulation efficiency, surface charge, qualitative and quantitative cellular uptakes, anti-oxidant and anti-inflammatory activities.

Results

Positively charged nanoparticles showed higher cytotoxicity effects compared to negative and neutral particles. The same trend was observed in antioxidant activity, which included radical scavenging and nitric oxide production. In addition, the anti-inflammatory activity (interleukin-1β, IL-6 and TNF-α) depleted in the order: positive>negative>neutral. The void neutral-, positively- and negatively-charged nanoparticles did not show any cytotoxic effects.

Conclusion

The difference in activity for different surface charges of Cur-NPs may be due to the internalization rate of the particles by alveolar macrophages. Intracellular uptake measurements demonstrated that Cur-NPs with positive surface charges possessed the strongest interaction with alveolar macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CLSM:

Confocal laser scanning microscope

CUR:

Curcumin

DAPI:

4′,6-diamidino-2-phenylindole

DMSO:

Dimethyl sulfoxide

DNA:

Deoxyribonucleic acid

DPPH:

1,1-diphenyl-2-picryhydrazyl

FBS:

Fetal bovine serum

HDAC2:

Histone deacetylase-2

IL-17:

Interleukin-17

IL-1β:

Interleukin-1beta

IL-6:

Interleukin-6

IL-8:

Interleukin-8

iNOS:

Induciblcbve nitric oxide synthase

L-NAME:

L-nitro-arginine methyl ester

LPS:

Lipopolysaccharide

MCP-1:

Monocyte chemotactic protein-1

MIP-1α:

Monocyte inflammatory protein-1

MTS:

3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolim

Mw :

Molecular weight

NF-κB:

Nuclear factor kappa B

NO:

Nitric oxide

NPs:

Nanoparticles

PBS:

Phosphate buffer saline

PDI:

Polydispersity index

PLGA:

Poly(lactic-co-glycolic) acid

PVA:

Polyvinyl alcohol

PVP:

Polyvinylpyrrolidone

TEM:

Transmission electron microscope

TNF-α:

Tumor necrosis factor alpha

VP:

Void particles

References

  1. Biswas S, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010;11(10):889–96.

    Article  CAS  PubMed  Google Scholar 

  2. Lauzon-Joset JF, Marsolais D, Langlois A, Bissonnette EY. Dysregulation of alveolar macrophages unleashes dendritic cell-mediated mechanisms of allergic airway inflammation. Mucosal Immunol. 2014;7(1):155–64.

    Article  CAS  PubMed  Google Scholar 

  3. Furuie H, Yamasaki H, Suga M, Ando M. Altered accessory cell function of alveolar macrophages: a possible mechanism for induction of Th2 secretory profile in idiopathic pulmonary fibrosis. Eur Respir J. 1997;10(4):787–94.

    CAS  PubMed  Google Scholar 

  4. Kolb M, Margetts PJ, Anthony DC, Pitossi F, Gauldie J. Transient expression of IL-1β induces acute lung injury and chronic repair leading to pulmonary fibrosis. J Clin Invest. 2001;107(12):1529–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Jayachandran R, BoseDasgupta S, Pieters J. Surviving the macrophage: tools and tricks employed by Mycobacterium tuberculosis. Curr Top Microbiol. 2014;374:189–209.

    Google Scholar 

  6. Lee W-H, Loo C-Y, Bebawy M, Luk F, Mason RS, Rohanizadeh R. Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Curr Neuropharmacol. 2013;11(4):338–78.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Gupta SC, Patchva S, Koh W, Aggarwal BB. Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin Exp Pharmacol Physiol. 2012;39(3):283–99.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Shehzad A, Khan S, Lee YS. Curcumin molecular targets in obesity and obesity-related cancers. Future Oncol. 2012;8(2):179–90.

    Article  CAS  PubMed  Google Scholar 

  9. Lee WH, Bebawy M, Loo CY, Luk F, Mason RS, Rohanizadeh R. Fabrication of curcumin micellar nanoparticles with enhanced anti-cancer activity. J Biomed Nanotechnol. 2015;11(13):1093–105.

    Article  CAS  PubMed  Google Scholar 

  10. Lee W-H, Loo C-Y, Young PM, Traini D, Mason RS, Rohanizadeh R. Recent advances in curcumin nanoformulation for cancer therapy. Expert Opin Drug Deliv. 2014;11(8):1183–201.

    Article  CAS  PubMed  Google Scholar 

  11. Jung KK, Lee HS, Cho JY, Shin WC, Rhee MH, Kim TG, et al. Inhibitory effect of curcumin on nitric oxide production from lipopolysaccharide-activated primary microglia. Life Sci. 2006;79(21):2022–31.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang LJ, Wu CF, Zhao SQ, Yuan D, Lian GN, Wang XX, et al. Demethoxycurcumin, a natural derivative of curcumin attenuates LPS-induced pro-inflammatory responses through down-regulation of intracellular ROS-related MAPK/NF-kappa B signaling pathways in N9 microglia induced by lipopolysaccharide. Int Immunopharmacol. 2010;10(3):331–8.

    Article  CAS  PubMed  Google Scholar 

  13. Tokaç M, Taner G, Aydın S, Özkardeş AB, Dündar HZ, Taşlıpınar MY, et al. Protective effects of curcumin against oxidative stress parameters and DNA damage in the livers and kidneys of rats with biliary obstruction. Food Chem Toxicol. 2013;61:28–35.

    Article  PubMed  Google Scholar 

  14. Ranjan A, Mukerjee A, Helson L, Vishwanatha J. Scale up, optimization and stability analysis of Curcumin C3 complex-loaded nanoparticles for cancer therapy. J Nanobiotechnol. 2012;10(1):38.

    Article  CAS  Google Scholar 

  15. Basnet P, Hussain H, Tho I, Skalko-Basnet N. Liposomal delivery system enhances anti-inflammatory properties of curcumin. J Pharm Sci. 2012;101(2):598–609.

    Article  CAS  PubMed  Google Scholar 

  16. Liu JS, Xu LH, Liu CT, Zhang DF, Wang SG, Deng ZN, et al. Preparation and characterization of cationic curcumin nanoparticles for improvement of cellular uptake. Carbohydr Polym. 2012;90(1):16–22.

    Article  CAS  PubMed  Google Scholar 

  17. Mourtas S, Lazar AN, Markoutsa E, Duyckaerts C, Antimisiaris SG. Multifunctional nanoliposomes with curcumin–lipid derivative and brain targeting functionality with potential applications for Alzheimer disease. Eur J Med Chem. 2014;80:175–83.

    Article  CAS  PubMed  Google Scholar 

  18. Anand P, Nair HB, Sung B, Kunnumakkara AB, Yadav VR, Tekmal RR, et al. Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo. Biochem Pharmacol. 2010;79(3):330–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Nair KL, Thulasidasan AKT, Deepa G, Anto RJ, Kumar GSV. Purely aqueous PLGA nanoparticulate formulations of curcumin exhibit enhanced anticancer activity with dependence on the combination of the carrier. Int J Pharm. 2012;425:44–52.

    Article  CAS  PubMed  Google Scholar 

  20. Ma Z, Haddadi A, Molavi O, Lavasanifar A, Lai R, Samuel J. Micelles of poly(ethylene oxide)-b-poly(ε-caprolactone) as vehicles for the solubilization, stabilization, and controlled delivery of curcumin. J Biomed Mater Res A. 2008;86A(2):300–10.

    Article  CAS  Google Scholar 

  21. Cheng K, Yeung C, Ho S, Chow S, Chow AL, Baum L. Highly stabilized curcumin nanoparticles tested in an in vitro blood–brain barrier model and in Alzheimer’s disease Tg2576 mice. AAPS J. 2013;15(2):324–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Jain S, Amiji M. Tuftsin-modified alginate nanoparticles as a noncondensing macrophage-targeted DNA delivery system. Biomacromolecules. 2012;13(4):1074–85.

    Article  CAS  PubMed  Google Scholar 

  23. Manju S, Sreenivasan K. Synthesis and characterization of a cytotoxic cationic polyvinylpyrrolidone–curcumin conjugate. J Pharm Sci. 2011;100(2):504–11.

    Article  CAS  PubMed  Google Scholar 

  24. Yen F-L, Wu T-H, Tzeng C-W, Lin L-T, Lin C-C. Curcumin nanoparticles improve the physicochemical properties of curcumin and effectively enhance its antioxidant and antihepatoma activities. J Agric Food Chem. 2010;58(12):7376–82.

    Article  CAS  PubMed  Google Scholar 

  25. Gangwar RK, Dhumale VA, Kumari D, Nakate UT, Gosavi SW, Sharma RB, et al. Conjugation of curcumin with PVP capped gold nanoparticles for improving bioavailability. Mater Sci Eng C. 2012;32(8):2659–63.

    Article  CAS  Google Scholar 

  26. Masuda T, Hidaka K, Shinohara A, Maekawa T, Takeda Y, Yamaguchi H. Chemical studies on antioxidant mechanism of curcuminoid: analysis of radical reaction products from curcumin. J Agric Food Chem. 1998;47(1):71–7.

    Article  Google Scholar 

  27. Shen L, Ji H-F. Theoretical study on physicochemical properties of curcumin. Spectrochim Acta A. 2007;67(3–4):619–23.

    Article  Google Scholar 

  28. Tang B, Ma L, Wang H-y, Zhang G-y. Study on the supramolecular interaction of curcumin and β-cyclodextrin by spectrophotometry and its analytical application. J Agric Food Chem. 2002;50(6):1355–61.

    Article  CAS  PubMed  Google Scholar 

  29. Bernabé-Pineda M, Ramírez-Silva Ma T, Romero-Romo M, González-Vergara E, Rojas-Hernández A. Determination of acidity constants of curcumin in aqueous solution and apparent rate constant of its decomposition. Spectrochim Acta A. 2004;60(5):1091–7.

    Article  Google Scholar 

  30. Wang Z, Leung M, Kee T, English D. The role of charge in the surfactant-assisted stabilization of the natural product curcumin. Langmuir. 2009;26:7.

    CAS  Google Scholar 

  31. Song KC, Lee HS, Choung IY, Cho KI, Ahn Y, Choi EJ. The effect of type of organic phase solvents on the particle size of poly(d,l-lactide-co-glycolide) nanoparticles. Colloids Surf A. 2006;276(1鈥?):162–7.

    CAS  Google Scholar 

  32. Schärtl W. Light scattering from polymer solutions and nanoparticle dispersions. Germany: Springer; 2007.

    Google Scholar 

  33. Karavas E, Georgarakis M, Docoslis A, Bikiaris D. Combining SEM, TEM, and micro-Raman techniques to differentiate between the amorphous molecular level dispersions and nanodispersions of a poorly water-soluble drug within a polymer matrix. Int J Pharm. 2007;340(1–2):76–83.

    Article  CAS  PubMed  Google Scholar 

  34. Easo SL, Mohanan PV. Dextran stabilized iron oxide nanoparticles: synthesis, characterization and in vitro studies. Carbohydr Polym. 2013;92(1):726–32.

    Article  CAS  PubMed  Google Scholar 

  35. Abdelwahed W, Degobert G, Fessi H. Investigation of nanocapsules stabilization by amorphous excipients during freeze-drying and storage. Eur J Pharm Biopharm. 2006;63(2):87–94.

    Article  CAS  PubMed  Google Scholar 

  36. Takeuchi H, Yamamoto H, Toyoda T, Toyobuku H, Hino T, Kawashima Y. Physical stability of size controlled small unilameller liposomes coated with a modified polyvinyl alcohol. Int J Pharm. 1998;164(1鈥?):103–11.

    Article  CAS  Google Scholar 

  37. Goodman CM, McCusker CD, Yilmaz T, Rotello VM. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem. 2004;15(4):897–900.

    Article  CAS  PubMed  Google Scholar 

  38. Bhattacharjee S, de Haan L, Evers N, Jiang X, Marcelis A, Zuilhof H, et al. Role of surface charge and oxidative stress in cytotoxicity of organic monolayer-coated silicon nanoparticles towards macrophage NR8383 cells. Part Fibre Toxicol. 2010;7(1):25.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Hoskins C, Cuschieri A, Wang L. The cytotoxicity of polycationic iron oxide nanoparticles: common endpoint assays and alternative approaches for improved understanding of cellular response mechanism. J Nanobiotechnol. 2012;10(1):15.

    Article  CAS  Google Scholar 

  40. Cho EC, Xie J, Wurm PA, Xia Y. Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant. Nano Lett. 2009;9(3):1080–4.

    Article  CAS  PubMed  Google Scholar 

  41. Harush-Frenkel O, Debotton N, Benita S, Altschuler Y. Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochem Biophys Res Commun. 2007;353(1):26–32.

    Article  CAS  PubMed  Google Scholar 

  42. Verma A, Stellacci F. Effect of surface properties on nanoparticle–cell interactions. Small. 2010;6(1):12–21.

    Article  CAS  PubMed  Google Scholar 

  43. Laroui H, Theiss AL, Yan Y, Dalmasso G, Nguyen HTT, Sitaraman SV, et al. Functional TNFα gene silencing mediated by polyethyleneimine/TNFα siRNA nanocomplexes in inflamed colon. Biomaterials. 2011;32(4):1218–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Matthäus B. Antioxidant activity of extracts obtained from residues of different oilseeds. J Agric Food Chem. 2002;50(12):3444–52.

    Article  PubMed  Google Scholar 

  45. Barnes PJ. Nitric oxide and airway disease. Ann Med. 1995;27(3):389–93.

    Article  CAS  PubMed  Google Scholar 

  46. Andreasen SØ, Chong S-F, Wohl BM, Goldie KN, Zelikin AN. Poly(vinyl alcohol) physical hydrogel nanoparticles, not polymer solutions, exert inhibition of nitric oxide synthesis in cultured macrophages. Biomacromolecules. 2013;14(5):1687–95.

    Article  CAS  PubMed  Google Scholar 

  47. Abe Y, Hashimoto SHU, Horie T. Curcumin inhibition of inflammatory cytokine production by human peripheral blood monocytes and alveolar macrophages. Pharmacol Res. 1999;39(1):41–7.

    Article  CAS  PubMed  Google Scholar 

  48. Zhong F, Chen H, Han L, Jin Y, Wang W. Curcumin attenuates lipopolysaccharide-induced renal inflammation. Biol Pharm Bull. 2011;34(2):226–32.

    Article  CAS  PubMed  Google Scholar 

  49. Suzuki M, Betsuyaku T, Ito Y, Nagai K, Odajima N, Moriyama C, Nasuhara Y, Nishimura M. Curcumin attenuates elastase- and cigarette smoke-induced pulmonary emphysema in mice. 2009.

  50. Meja KK, Rajendrasozhan S, Adenuga D, Biswas SK, Sundar IK, Spooner G, et al. Curcumin restores corticosteroid function in monocytes exposed to oxidants by maintaining HDAC2. Am J Respir Cell Mol Biol. 2008;39(3):312–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Rahman I, Adcock IM. Oxidative stress and redox regulation of lung inflammation in COPD. Eur Respir J. 2006;28(1):219–42.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

WH Lee is the recipient of Cancer Institute New South Wales (CINSW) Early Career Fellowship. PM Young is the recipient of an Australian Research Council Future Fellowship (project number FT110100996). D Traini is the recipient of an Australian Research Council Future Fellowship (project number FT12010063). The authors are grateful to Dr Lyn Moir for her assistance in conducting flow cytometry analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Traini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, WH., Loo, CY., Young, P.M. et al. Curcumin Nanoparticles Attenuate Production of Pro-inflammatory Markers in Lipopolysaccharide-Induced Macrophages. Pharm Res 33, 315–327 (2016). https://doi.org/10.1007/s11095-015-1789-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1789-9

KEY WORDS

Navigation