Skip to main content

Advertisement

Log in

Development of Rous sarcoma Virus-like Particles Displaying hCC49 scFv for Specific Targeted Drug Delivery to Human Colon Carcinoma Cells

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Virus-like particles (VLPs) have been used as drug carriers for drug delivery systems. In this study, hCC49 single chain fragment variable (scFv)-displaying Rous sarcoma virus-like particles (RSV VLPs) were produced in silkworm larvae to be a specific carrier of an anti-cancer drug.

Method

RSV VLPs displaying hCC49 scFv were created by the fusion of the transmembrane and cytoplasmic domains of hemagglutinin from influenza A (H1N1) virus and produced in silkworm larvae. The display of hCC49 scFv on the surface of RSV VLPs was confirmed by enzyme-linked immunosorbent assay using tumor-associated glycoprotein-72 (TAG-72), fluorescent microscopy, and immunoelectron microscopy. Fluorescein isothiocyanate (FITC) or doxorubicin (DOX) was incorporated into hCC49 scFv-displaying RSV VLPs by electroporation and specific targeting of these VLPs was investigated by fluorescent microscopy and cytotoxicity assay using LS174T cells.

Results

FITC was delivered to LS174T human colon adenocarcinoma cells by hCC49 scFv-displaying RSV VLPs, but not by RSV VLPs. This indicated that hCC49 scFv allowed FITC-loaded RSV VLPs to be delivered to LS174T cells. DOX, which is an anti-cancer drug with intrinsic red fluorescence, was also loaded into hCC49 scFv-displaying RSV VLPs by electroporation; the DOX-loaded hCC49 scFv-displaying RSV VLPs killed LS174T cells via the specific delivery of DOX that was mediated by hCC49 scFv. HEK293 cells were alive even though in the presence of DOX-loaded hCC49 scFv-displaying RSV VLPs.

Conclusion

These results showed that hCC49 scFv-displaying RSV VLPs from silkworm larvae offered specific drug delivery to colon carcinoma cells in vitro. This scFv-displaying enveloped VLP system could be applied to drug and gene delivery to other target cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CLSM:

Confocal laser scanning microscope

BmNPV:

Bombyx mori nucleopolyhedrovirus

BmNPV/RSV-gag-577:

BmNPV bacmid encoding the RSV gag protein gene

BSA:

Bovine serum albumin

DOX:

Doxorubicin

DLS:

Dynamic light scattering

ELISA:

Enzyme-linked immunosorbent assay

FITC:

Fluorescein isothiocyanate

gag:

Group antigen protein

GPI:

Glycosylphosphatidylinositol

HA:

Hemagglutinin

hCC49:

Humanized CC49 antibody

HRP:

Horseradish peroxidase

MTT:

3-(4,5-di-methylthiazol-2-2yl)-2,5-diphenyltetrazolium bromide

PBS:

Phosphate-buffered saline

RSV:

Rous sarcoma virus

RSV VLPs:

Rous sarcoma virus-like particles

scFv:

Single-chain variable fragment

TAG-72:

Tumor associated glycoparticle-72

VLPs:

Virus-like particles

References

  1. Lua LHL, Connors NK, Sainsbury F, Chuan YP, Wibowo N, Middelberg APJ. Bioengineering virus-like particles as vaccines. Biotechnol Bioeng. 2014;111(3):425–40.

    Article  CAS  PubMed  Google Scholar 

  2. Zeltins A. Construction and characterization of virus-like particles: a review. Mol Biotechnol. 2013;53:92–107.

    Article  CAS  PubMed  Google Scholar 

  3. Zhao Q, Allen MJ, Wang Y, Wang B, Wang N, Shi L, et al. Disassembly and reassembly improves morphology and thermal stability of human papillomavirus type 16 virus-like particles. Nanomedicine. 2012;8(7):1182–9.

    Article  CAS  PubMed  Google Scholar 

  4. Smith MT, Hawes AK, Bundy BC. Reengineering viruses and virus-like particles though chemical functionalization strategies. Curr Opin Biotechnol. 2013;24(4):620–6.

    Article  CAS  PubMed  Google Scholar 

  5. Pan YS, Wei HJ, Chang CC, Lin CH, Wei TS, Wu SC, et al. Construction and characterization of insect cell-derived influenza VLP: cell binding, fusion, and EGFP incorporation. J Biomed Biotechnol. 2010;2010:506363.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Wei HJ, Chang W, Lin SC, Liu WC, Chang DK, Chong P, et al. Fabrication of influenza virus-like particles using M2 fusion proteins for imaging single viruses and designing vaccines. Vaccine. 2011;29(41):7163–72.

    Article  CAS  PubMed  Google Scholar 

  7. Kim YS, Wielgosz MM, Hargrove P, Kepes S, Gray J, Persons DA, et al. Transduction of human primitive repopulating hematopoietic cells with lentiviral vectors pseudotyped with various envelope proteins. Mol Ther. 2010;18(7):1310–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Deo VK, Yui M, Alam J, Yamazaki M, Kato T, Park EY. A model for targeting colon carcinoma cells using single-chain variable fragments anchored on virus-like particles via glycosylphosphatidylinositol anchor. Pharm Res. 2014;31(8):2166–77.

    Article  CAS  PubMed  Google Scholar 

  9. Deo VK, Kato T, Park EY. Chimeric virus-like particles made using GAG and M1 capsid proteins providing dual drug delivery and vaccine platform. Mol. Pharm. 2015, in press.

  10. Colcher D, Minelli MF, Roselli M, Muraro R, Simpson-Milenic D, Schlom J. Radioimmunolocalization of human carcinoma xenografts with B72.3 second generation monoclonal antibodies. Cancer Res. 1988;48(16):4597–603.

    CAS  PubMed  Google Scholar 

  11. Divig CR, Scott AM, McDermott K, Fallone PS, Hilton S, Siler K, et al. Clinical comparison of radiolocalization of two monoclonal antibodies (mAbs) against the TAG-72 antigen. Nucl Med Biol. 1994;21(1):9–15.

    Article  Google Scholar 

  12. Thor A, Ohuchi N, Szpak CA, Johnston WW, Schlom J. Distribution of oncofetal tumor-associated glycoprotein-72 defined by monoclonal antibody B72.3. Cancer Res. 1986;46(6):3118–24.

    CAS  PubMed  Google Scholar 

  13. Deo VK, Tsuji Y, Yasuda T, Kato T, Sakamoto N, Suzuki H, et al. Expression of an RSV-gag virus-like particle in insect cell lines and silkworm larvae. J Virol Methods. 2011;177(2):147–52.

    Article  CAS  PubMed  Google Scholar 

  14. Motohashi T, Shimojima T, Fukagawa T, Maenaka K, Park EY. Efficient large-scale production of larvae and pupae of silkworm by Bombyx mori nucleopolyhedrosis virus bacmid system. Biochem Biophys Res Commun. 2005;326(2):564–9.

    Article  CAS  PubMed  Google Scholar 

  15. Xiang Y, Ridky TW, Krishna NK, Leis J. Altered Rous sarcoma virus Gag polyprotein processing and its effects on particle formation. J Virol. 1997;71:2083–91.

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Tsuji Y, Deo VK, Kato T, Park EY. Production of Rous sarcoma virus-like particles displaying human transmembrane protein in silkworm larvae and its application to ligand-receptor binding assay. J Biotechnol. 2011;155:185–92.

    Article  CAS  PubMed  Google Scholar 

  17. Boyce FM, Bucher NL. Baculovirus-mediated gene transfer into mammaliam cells. Proc Natl Acad Sci U S A. 1996;93:2348–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Dong S, Wang M, Qiu Z, Deng F, Vlak JM, Hu Z, et al. Autographa californica multicapsid nucleopolyhedrovirus efficiently infects Sf9 cells transduces mammalian cells via direct fusion with the plasma membrane at low pH. J Virol. 2010;84:5351–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Hefferon KL, Oomens AG, Monsma SA, Finnerty CM, Blissard GW. Host cell receptor binding by baculovirus GP64 and kinetics of virus entry. Virology. 1999;258:455–68.

    Article  CAS  PubMed  Google Scholar 

  20. Luz-Madrigal A, Asanov A, Camacho-Zarco AR, Sampieri A, Vaca L. A cholesterol recognition amino acid consensus domain in GP64 fusion protein facilitates anchoring og baculovirus to mammalian cells. J Virol. 2013;87:11849–907.

    Article  Google Scholar 

  21. Tani H, Nishijima M, Ushijima H, Miyamura T, Matsuura Y. Characterization of cell-surface determinants important for baculovirus infection. Virology. 2001;279:343–53.

    Article  CAS  PubMed  Google Scholar 

  22. Wu S, Wang S. A pH-sensitive heparin-binding sequence from gp64 protein of baculovirus is important for binding to mammalian cells but not to Sf9 cells. J Virol. 2012;86:484–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Fay F, Scott CJ. Antibody-targeted nanoparticles for cancer therapy. Immunotherapy. 2011;3:381–94.

    Article  CAS  PubMed  Google Scholar 

  24. Shimbo T, Kawachi M, Saga K, Fujita H, Yamazaki T, Tamai K, et al. Development of a transferrin receptor-targeting HVJ-E vector. Biochim Biophys Res Commun. 2007;364:423–8.

    Article  CAS  Google Scholar 

  25. Oess S, Hildt E. Novel cell permeable motif derived from the PreS2-domain of hepatitis-B virus surface antigens. Gene Ther. 2000;7:750–8.

    Article  CAS  PubMed  Google Scholar 

  26. Kaneda Y. Virosome: a novel vector to enable multi-modal strategies for cancer therapies. Adv Drug Deliv Rev. 2012;64:730–8.

    Article  CAS  PubMed  Google Scholar 

  27. Mima H, Yamamoto S, Ito M, Tomoshige R, Tabata Y, Tamai K, et al. Targeted chemotherapy against intraperitoneally disseminated colon carcinoma using a cationized gelatin-conjugated HVJ envelope vector. Mol Cancer Ther. 2006;5(4):1021–8.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Q, Li Y, Shi Y, Zhang Y. HVJ envelope vector, a versatile delivery system: its development, application, and perspectives. Biochem Biophys Res Commun. 2008;373:345–9.

    Article  CAS  PubMed  Google Scholar 

  29. Arhel N, Kirchhoff F. Host proteins involved in HIV infection: new therapeutic targets. Biochim Biophys Acta. 2010;1802(3):313–21.

    Article  CAS  PubMed  Google Scholar 

  30. Kim CW, Chang KM. Hepatitis C virus: virology and life cycle. Clin Mol Hepatol. 2013;19(1):17–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Brasch M, Voets IK, Koay MS, Cornelissen JJ. Phototrigged cargo release from virus-like assemblies. Faraday Discuss. 2013;166:47–57.

    Article  CAS  PubMed  Google Scholar 

  32. Niikura K, Sugimura N, Musashi Y, Mikuni S, Matsuo Y, Kobayashi S, et al. Virus-like particles with removal cyclodextrins enable glutathione-triggered drug release in cells. Mol Biosyst. 2013;9:501–7.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We thank Professor Hiroshi Ueda (Tokyo Institute of Technology, Japan) for the contribution of the plasmid carrying scFv cDNA. This work was supported by Grant-in-Aid for Scientific Research (A) Grant No.22248009 and by Promotion of Nanobio-Technology Research to Support Aging and Welfare Society from the Ministry of Education, Culture, Sports, Science and Technology, Japan. No additional external funding was received for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enoch Y. Park.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

(DOCX 267 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kato, T., Yui, M., Deo, V.K. et al. Development of Rous sarcoma Virus-like Particles Displaying hCC49 scFv for Specific Targeted Drug Delivery to Human Colon Carcinoma Cells. Pharm Res 32, 3699–3707 (2015). https://doi.org/10.1007/s11095-015-1730-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1730-2

KEY WORDS

Navigation