Skip to main content
Log in

Reducing the Visibility of the Vector/DNA Nanocomplexes to the Immune System by Elastin-Like Peptides

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

One of the major hurdles facing nanomedicines is the antibody production against nanoparticles that subsequently results in their opsonization and clearance by macrophages. The objective of this research was to examine and identify the sequence of a low-immunogenic peptide based on recombinant elastin-like polypeptides (ELPs) that does not evoke IgG response and can potentially be used for masking the surfaces of the nanoparticles.

Methods

Biopolymers composed of a DNA condensing domain in fusion with anionic, neutral and cationic elastin-like peptides were genetically engineered. The biopolymers were used to complex with plasmid DNA and form ELP-coated nanoparticles. Then, the potential immunogenicity of nanoparticles in terms of IgM/IgG response after repeated injections was evaluated in Balb/c immunocompetent mice.

Results

The results revealed the sequence of a non-immunogenic ELP construct that in comparison to control group did not elicit any significant IgG response, whereas the vector/DNA complexes that were coated with polyethylene glycol (PEG) did elicit significant IgG response under the same conditions.

Conclusions

The identification of the sequence of an ELP-based peptide that does not induce IgG response opens the door to more focused in-depth immunotoxicological studies which could ultimately lead to the production of safer and more effective drug/gene delivery systems such as liposomes, micelles, polymeric nanoparticles, viruses and antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ELP:

Elastin-like polypeptides

Ig:

Immunoglobulin

pCpGfree:

Plasmid DNA devoid of CpG islands

pDNA:

Plasmid DNA

PEG:

Polyethylene glycol

pEGFP:

Plasmid DNA encoding green fluorescent protein

References

  1. Ishida T, Harashima H, Kiwada H. Liposome clearance. Biosci Rep. 2002;22(2):197–224.

    Article  CAS  PubMed  Google Scholar 

  2. Chekhonin VP, Zhirkov YA, Gurina OI, Ryabukhin IA, Lebedev SV, Kashparov IA, et al. PEGylated immunoliposomes directed against brain astrocytes. Drug Deliv. 2005;12(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  3. Funhoff AM, Monge S, Teeuwen R, Koning GA, Schuurmans-Nieuwenbroek NM, Crommelin DJ, et al. PEG shielded polymeric double-layered micelles for gene delivery. J Control Release. 2005;102(3):711–24.

    Article  CAS  PubMed  Google Scholar 

  4. Moghimi SM, Szebeni J. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res. 2003;42(6):463–78.

    Article  CAS  PubMed  Google Scholar 

  5. Ishida T, Ichihara M, Wang X, Yamamoto K, Kimura J, Majima E, et al. Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomes. J Control Release. 2006;112(1):15–25.

    Article  CAS  PubMed  Google Scholar 

  6. Judge A, McClintock K, Phelps JR, Maclachlan I. Hypersensitivity and loss of disease site targeting caused by antibody responses to PEGylated liposomes. Mol Ther. 2006;13(2):328–37.

    Article  CAS  PubMed  Google Scholar 

  7. Verhoef JJ, Anchordoquy TJ. Questioning the Use of PEGylation for Drug Delivery. Drug Deliv Transl Res. 2013;3(6):499–503.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Betre H, Liu W, Zalutsky MR, Chilkoti A, Kraus VB, Setton LA. A thermally responsive biopolymer for intra-articular drug delivery. J Control Release. 2006;115(2):175–82.

    Article  CAS  PubMed  Google Scholar 

  9. Heilshorn SC, Liu JC, Tirrell DA. Cell-binding domain context affects cell behavior on engineered proteins. Biomacromolecules. 2005;6(1):318–23.

    Article  CAS  PubMed  Google Scholar 

  10. Heilshorn SC, DiZio KA, Welsh ER, Tirrell DA. Endothelial cell adhesion to the fibronectin CS5 domain in artificial extracellular matrix proteins. Biomaterials. 2003;24(23):4245–52.

    Article  CAS  PubMed  Google Scholar 

  11. Betre H, Setton LA, Meyer DE, Chilkoti A. Characterization of a genetically engineered elastin-like polypeptide for cartilaginous tissue repair. Biomacromolecules. 2002;3(5):910–6.

    Article  CAS  PubMed  Google Scholar 

  12. Urry DW, Parker TM, Reid MC, Gowda DC. Biocompatibility of the bioelastic materials, poly(GVGVP) and its gamma-irridation cross-linked matrix: summary of generic biological test. J Bioact Compat Polym. 1991;6:263–83.

    Article  CAS  Google Scholar 

  13. Shah M, Hsueh PY, Sun G, Chang HY, Janib SM, MacKay JA. Biodegradation of elastin-like polypeptide nanoparticles. Protein Sci. 2012;21(6):743–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Sandberg LB, Leslie JG, Leach CT, Alvarez VL, Torres AR, Smith DW. Elastin covalent structure as determined by solid phase amino acid sequencing. Pathol Biol (Paris). 1985;33(4):266–74.

    CAS  Google Scholar 

  15. Urry DW. Physical chemistry of biological free energy transduction as demonstrated by elastic protein-based polymers. J Phys Chem B. 1997;101(51):11007–28.

    Article  CAS  Google Scholar 

  16. Urry DW, Urry KD, Szaflarski W, Nowicki M. Elastic-contractile model proteins: physical chemistry, protein function and drug design and delivery. Adv Drug Deliv Rev. 2010;62(15):1404–55.

    Article  CAS  PubMed  Google Scholar 

  17. Canine BF, Wang Y, Hatefi A. Biosynthesis and characterization of a novel genetically engineered polymer for targeted gene transfer to cancer cells. J Control Release. 2009;138(3):188–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Canine BF, Wang Y, Ouyang W, Hatefi A. Development of targeted recombinant polymers that can deliver siRNA to the cytoplasm and plasmid DNA to the cell nucleus. J Control Release. 2011;151(1):95–101.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Urry DW, Gowda DC, Parker TM, Luan CH, Reid MC, Harris CM, et al. Hydrophobicity scale for proteins based on inverse temperature transitions. Biopolymers. 1992;32(9):1243–50.

    Article  CAS  PubMed  Google Scholar 

  20. Yardeni T, Eckhaus M, Morris HD, Huizing M, Hoogstraten-Miller S. Retro-orbital injections in mice. Lab Animal. 2011;40(5):155–60.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Karjoo Z, McCarthy HO, Patel P, Nouri FS, Hatefi A. Systematic engineering of uniform, highly efficient, targeted and shielded viral-mimetic nanoparticles. Small. 2013;9(16):2774–83.

    Article  CAS  PubMed  Google Scholar 

  22. Ma Y, Zhuang Y, Xie X, Wang C, Wang F, Zhou D, et al. The role of surface charge density in cationic liposome-promoted dendritic cell maturation and vaccine-induced immune responses. Nanoscale. 2011;3(5):2307–14.

    Article  CAS  PubMed  Google Scholar 

  23. Barnier Quer C, Elsharkawy A, Romeijn S, Kros A, Jiskoot W. Cationic liposomes as adjuvants for influenza hemagglutinin: more than charge alone. Eur J Pharm Biopharm. 2012;81(2):294–302.

    Article  CAS  PubMed  Google Scholar 

  24. Christensen D, Korsholm KS, Rosenkrands I, Lindenstrom T, Andersen P, Agger EM. Cationic liposomes as vaccine adjuvants. Expert Rev Vaccines. 2007;6(5):785–96.

    Article  CAS  PubMed  Google Scholar 

  25. Nechansky A, Kircheis R. Immunogenicity of therapeutics: a matter of efficacy and safety. Expert Opin Drug Discovery. 2010;5(11):1067–79.

    Article  CAS  Google Scholar 

  26. Hatefi A, Canine BF. Perspectives in vector development for systemic cancer gene therapy. Gene Ther Mol Biol. 2009;13(A):15–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Jain A, Yan W, Miller KR, O’Carra R, Woodward JG, Mumper RJ. Tresyl-based conjugation of protein antigen to lipid nanoparticles increases antigen immunogenicity. Int J Pharm. 2010;401(1–2):87–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Hyde SC, Pringle IA, Abdullah S, Lawton AE, Davies LA, Varathalingam A, et al. CpG-free plasmids confer reduced inflammation and sustained pulmonary gene expression. Nat Biotechnol. 2008;26(5):549–51.

    Article  CAS  PubMed  Google Scholar 

  29. Yew NS, Cheng SH. Reducing the immunostimulatory activity of CpG-containing plasmid DNA vectors for non-viral gene therapy. Expert Opin Drug Deliv. 2004;1(1):115–25.

    Article  CAS  PubMed  Google Scholar 

  30. Marinus MG, Morris NR. Isolation of deoxyribonucleic acid methylase mutants of Escherichia coli K-12. J Bacteriol. 1973;114(3):1143–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Reyes-Sandoval A, Ertl HC. CpG methylation of a plasmid vector results in extended transgene product expression by circumventing induction of immune responses. Mol Ther. 2004;9(2):249–61.

    Article  CAS  PubMed  Google Scholar 

  32. Feltquate DM, Robinson HL. Effect of CpG methylation on isotype and magnitude of antibody responses to influenza hemagglutinin-expressing plasmid. DNA Cell Biol. 1999;18(9):663–70.

    Article  CAS  PubMed  Google Scholar 

  33. Johnstone SA, Masin D, Mayer L, Bally MB. Surface-associated serum proteins inhibit the uptake of phosphatidylserine and poly(ethylene glycol) liposomes by mouse macrophages. Biochim Biophys Acta. 2001;1513(1):25–37.

    Article  CAS  PubMed  Google Scholar 

  34. Yao XL, Hong M. Structure distribution in an elastin-mimetic peptide (VPGVG)3 investigated by solid-state NMR. J Am Chem Soc. 2004;126(13):4199–210.

    Article  CAS  PubMed  Google Scholar 

  35. Reguera J, Fahmi A, Moriarty P, Girotti A, Rodriguez-Cabello JC. Nanopore formation by self-assembly of the model genetically engineered elastin-like polymer [(VPGVG)2(VPGEG)(VPGVG)2]15. J Am Chem Soc. 2004;126(41):13212–3.

    Article  CAS  PubMed  Google Scholar 

  36. Ye SF, Tian MM, Wang TX, Ren L, Wang D, Shen LH, et al. Synergistic effects of cell-penetrating peptide Tat and fusogenic peptide HA2-enhanced cellular internalization and gene transduction of organosilica nanoparticles. Nanomedicine. 2012;8(6):833–41.

    Article  CAS  PubMed  Google Scholar 

  37. Khalil IA, Hayashi Y, Mizuno R, Harashima H. Octaarginine- and pH sensitive fusogenic peptide-modified nanoparticles for liver gene delivery. J Control Release. 2011;156(3):374–80.

    Article  CAS  PubMed  Google Scholar 

  38. Gref R, Luck M, Quellec P, Marchand M, Dellacherie E, Harnisch S, et al. ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B: Biointerfaces. 2000;18(3–4):301–13.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was made possible by the Rutgers University Faculty Research Grant (#281663) and animal housing facility at the Center for Cancer Prevention Research at Rutgers University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Hatefi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nouri, F.S., Wang, X., Chen, X. et al. Reducing the Visibility of the Vector/DNA Nanocomplexes to the Immune System by Elastin-Like Peptides. Pharm Res 32, 3018–3028 (2015). https://doi.org/10.1007/s11095-015-1683-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1683-5

KEY WORDS

Navigation