Skip to main content
Log in

Human ALDH1B1 Polymorphisms may Affect the Metabolism of Acetaldehyde and All-trans retinaldehyde—In Vitro Studies and Computational Modeling

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To elucidate additional substrate specificities of ALDH1B1 and determine the effect that human ALDH1B1 polymorphisms will have on substrate specificity.

Methods

Computational-based molecular modeling was used to predict the binding of the substrates propionaldehyde, 4-hydroxynonenal, nitroglycerin, and all-trans retinaldehyde to ALDH1B1. Based on positive in silico results, the capacity of purified human recombinant ALDH1B1 to metabolize nitroglycerin and all-trans retinaldehyde was explored. Additionally, metabolism of 4-HNE by ALDH1B1 was revisited. Databases queried to find human polymorphisms of ALDH1B1 identified three major variants: ALDH1B1*2 (A86V), ALDH1B1*3 (L107R), and ALDH1B1*5 (M253V). Computational modeling was used to predict the binding of substrates and of cofactor (NAD+) to the variants. These human polymorphisms were created and expressed in a bacterial system and specific activity was determined.

Results

ALDH1B1 metabolizes (and appears to be inhibited by) nitroglycerin and has favorable kinetics for the metabolism of all-trans retinaldehyde. ALDH1B1 metabolizes 4-HNE with higher apparent affinity than previously described, but with low throughput. Recombinant ALDH1B1*2 is catalytically inactive, whereas both ALDH1B1*3 and ALDH1B1*5 are catalytically active. Modeling indicated that the lack of activity in ALDH1B1*2 is likely due to poor NAD+ binding. Modeling also suggests that ALDH1B1*3 may be less able to metabolize all-trans retinaldehyde and that ALDH1B1*5 may bind NAD+ poorly.

Conclusions

ALDH1B1 metabolizes nitroglycerin and all-trans-retinaldehyde. One of the three human polymorphisms, ALDH1B1*2, is catalytically inactive, likely due to poor NAD+ binding. Expression of this variant may affect ALDH1B1-dependent metabolic functions in stem cells and ethanol metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

1,2 DNG:

1,2 dinitroglycerin

1,3 DNG:

1,3 dinitroglycerin

4-HNE:

4-hydroxynonenal

References

  1. Marchitti SA, Brocker C, Stagos D, Vasiliou V. Non-P450 aldehyde oxidizing enzymes: the aldehyde dehydrogenase superfamily. Expert Opin Drug Metab Toxicol. 2008;4(6):697–720.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Hsu LC, Chang WC. Cloning and characterization of a new functional human aldehyde dehydrogenase gene. J Biol Chem. 1991;266(19):12257–65.

    CAS  PubMed  Google Scholar 

  3. Stewart MJ, Malek K, Xiao Q, Dipple KM, Crabb DW. The novel aldehyde dehydrogenase gene, ALDH5, encodes an active aldehyde dehydrogenase enzyme. Biochem Biophys Res Commun. 1995;211(1):144–51.

    Article  CAS  PubMed  Google Scholar 

  4. Stagos D, Chen Y, Brocker C, Donald E, Jackson BC, Orlicky DJ, et al. Aldehyde dehydrogenase 1B1: molecular cloning and characterization of a novel mitochondrial acetaldehyde-metabolizing enzyme. Drug Metab Dispos. 2010;38(10):1679–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Stagos D, Chen Y, Cantore M, Jester JV, Vasiliou V. Corneal aldehyde dehydrogenases: multiple functions and novel nuclear localization. Brain Res Bull. 2010;81(2–3):211–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Daiber A, Wenzel P, Oelze M, Schuhmacher S, Jansen T, Munzel T. Mitochondrial aldehyde dehydrogenase (ALDH-2)–maker of and marker for nitrate tolerance in response to nitroglycerin treatment. Chem Biol Interact. 2009;178(1–3):40–7.

    Article  CAS  PubMed  Google Scholar 

  7. Theodosiou M, Laudet V, Schubert M. From carrot to clinic: an overview of the retinoic acid signaling pathway. Cell Mol Life Sci. 2010;67(9):1423–45.

    Article  CAS  PubMed  Google Scholar 

  8. Crabb DW, Stewart MJ, Xiao Q. Hormonal and chemical influences on the expression of class 2 aldehyde dehydrogenases in rat H4IIEC3 and human HuH7 hepatoma cells. Alcohol Clin Exp Res. 1995;19(6):1414–9.

    Article  CAS  PubMed  Google Scholar 

  9. Luo P, Wang A, Payne KJ, Peng H, Wang JG, Parrish YK, et al. Intrinsic retinoic acid receptor alpha-cyclin-dependent kinase-activating kinase signaling involves coordination of the restricted proliferation and granulocytic differentiation of human hematopoietic stem cells. Stem Cells. 2007;25(10):2628–37.

    Article  CAS  PubMed  Google Scholar 

  10. Ioannou M, Serafimidis I, Arnes L, Sussel L, Singh S, Vasiliou V, et al. ALDH1B1 is a potential stem/progenitor marker for multiple pancreas progenitor pools. Dev Biol. 2013;374(1):153–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Chen Z, Foster MW, Zhang J, Mao L, Rockman HA, Kawamoto T, et al. An essential role for mitochondrial aldehyde dehydrogenase in nitroglycerin bioactivation. Proc Natl Acad Sci U S A. 2005;102(34):12159–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Zhang H, Chen YG, Xu F, Xue L, Jiang CX, Zhang Y. The relationship between aldehyde dehydrogenase-2 gene polymorphisms and efficacy of nitroglycerin. Zhonghua Nei Ke Za Zhi. 2007;46(8):629–32.

    CAS  PubMed  Google Scholar 

  13. Beretta M, Sottler A, Schmidt K, Mayer B, Gorren AC. Partially irreversible inactivation of mitochondrial aldehyde dehydrogenase by nitroglycerin. J Biol Chem. 2008;283(45):30735–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Sherman D, Dave V, Hsu LC, Peters TJ, Yoshida A. Diverse polymorphism within a short coding region of the human aldehyde dehydrogenase-5 (ALDH5) gene. Hum Genet. 1993;92(5):477–80.

    Article  CAS  PubMed  Google Scholar 

  15. Sherman DI, Ward RJ, Yoshida A, Peters TJ. Alcohol and acetaldehyde dehydrogenase gene polymorphism and alcoholism. EXS. 1994;71:291–300.

    CAS  PubMed  Google Scholar 

  16. Husemoen LL, Fenger M, Friedrich N, Tolstrup JS, Beenfeldt Fredriksen S, Linneberg A. The association of ADH and ALDH gene variants with alcohol drinking habits and cardiovascular disease risk factors. Alcohol Clin Exp Res. 2008;32(11):1984–91.

    CAS  PubMed  Google Scholar 

  17. Linneberg A, Gonzalez-Quintela A, Vidal C, Jorgensen T, Fenger M, Hansen T, et al. Genetic determinants of both ethanol and acetaldehyde metabolism influence alcohol hypersensitivity and drinking behaviour among Scandinavians. Clin Exp Allergy. 2010;40(1):123–30.

    Article  CAS  PubMed  Google Scholar 

  18. Steinmetz CG, Xie P, Weiner H, Hurley TD. Structure of mitochondrial aldehyde dehydrogenase: the genetic component of ethanol aversion. Structure. 1997;5(5):701–11.

    Article  CAS  PubMed  Google Scholar 

  19. Liu ZJ, Sun YJ, Rose J, Chung YJ, Hsiao CD, Chang WR, et al. The first structure of an aldehyde dehydrogenase reveals novel interactions between NAD and the Rossmann fold. Nat Struct Biol. 1997;4(4):317–26.

    Article  CAS  PubMed  Google Scholar 

  20. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The protein data bank. Nucleic Acids Res. 2000;28(1):235–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Perez-Miller SJ, Hurley TD. Coenzyme isomerization is integral to catalysis in aldehyde dehydrogenase. Biochemistry. 2003;42(23):7100–9.

    Article  CAS  PubMed  Google Scholar 

  22. Moore SA, Baker HM, Blythe TJ, Kitson KE, Kitson TM, Baker EN. Sheep liver cytosolic aldehyde dehydrogenase: the structure reveals the basis for the retinal specificity of class 1 aldehyde dehydrogenases. Structure. 1998;6(12):1541–51.

    Article  CAS  PubMed  Google Scholar 

  23. Notredame C, Higgins DG, Heringa J. T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol. 2000;302(1):205–17.

    Article  CAS  PubMed  Google Scholar 

  24. Webb B, Sali A. Protein structure modeling with MODELLER. Methods Mol Biol. 2014;1137:1–15.

    Article  PubMed  Google Scholar 

  25. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, et al. Scalable molecular dynamics with NAMD. J Comput Chem. 2005;26(16):1781–802.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–61.

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Durrant JD, McCammon JA. BINANA: a novel algorithm for ligand-binding characterization. J Mol Graph Model. 2011;29(6):888–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. McClean SW, Ruddel ME, Gross EG, DeGiovanna JJ, Peck GL. Liquid-chromatographic assay for retinol (vitamin A) and retinol analogs in therapeutic trials. Clin Chem. 1982;28(4 Pt 1):693–6.

    CAS  PubMed  Google Scholar 

  29. Ongoing and future developments at the Universal Protein Resource. Nucleic Acids Res. 2011;39(Database issue):D214-9.

  30. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29(1):308–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Safran M, Dalah I, Alexander J, Rosen N, Iny Stein T, Shmoish M, et al. GeneCards Version 3: the human gene integrator. Database (Oxford). 2010;2010:baq020.

  32. Lassen N, Estey T, Tanguay RL, Pappa A, Reimers MJ, Vasiliou V. Molecular cloning, baculovirus expression, and tissue distribution of the zebrafish aldehyde dehydrogenase 2. Drug Metab Dispos. 2005;33(5):649–56.

    Article  CAS  PubMed  Google Scholar 

  33. Yoval-Sanchez B, Rodriguez-Zavala JS. Differences in susceptibility to inactivation of human aldehyde dehydrogenases by lipid peroxidation byproducts. Chem Res Toxicol. 2012;25(3):722–9.

    Article  CAS  PubMed  Google Scholar 

  34. Li Y, Zhang D, Jin W, Shao C, Yan P, Xu C, et al. Mitochondrial aldehyde dehydrogenase-2 (ALDH2) Glu504Lys polymorphism contributes to the variation in efficacy of sublingual nitroglycerin. J Clin Invest. 2006;116(2):506–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Wang MF, Han CL, Yin SJ. Substrate specificity of human and yeast aldehyde dehydrogenases. Chem Biol Interact. 2009;178(1–3):36–9.

    Article  CAS  PubMed  Google Scholar 

  36. Laskowski RA, Swindells MB. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model. 2011;51(10):2778–86.

    Article  CAS  PubMed  Google Scholar 

  37. Shen MY, Sali A. Statistical potential for assessment and prediction of protein structures. Protein Sci. 2006;15(11):2507–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Lee KH, Kim HS, Jeong HS, Lee YS. Chaperonin GroESL mediates the protein folding of human liver mitochondrial aldehyde dehydrogenase in Escherichia coli. Biochem Biophys Res Commun. 2002;298(2):216–24.

    Article  CAS  PubMed  Google Scholar 

  39. Sydow K, Daiber A, Oelze M, Chen Z, August M, Wendt M, et al. Central role of mitochondrial aldehyde dehydrogenase and reactive oxygen species in nitroglycerin tolerance and cross-tolerance. J Clin Invest. 2004;113(3):482–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Chen Z, Stamler JS. Bioactivation of nitroglycerin by the mitochondrial aldehyde dehydrogenase. Trends Cardiovasc Med. 2006;16(8):259–65.

    Article  CAS  PubMed  Google Scholar 

  41. Beretta M, Gorren AC, Wenzl MV, Weis R, Russwurm M, Koesling D, et al. Characterization of the East Asian variant of aldehyde dehydrogenase-2: bioactivation of nitroglycerin and effects of Alda-1. J Biol Chem. 2010;285(2):943–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Bchini R, Vasiliou V, Branlant G, Talfournier F, Rahuel-Clermont S. Retinoic acid biosynthesis catalyzed by retinal dehydrogenases relies on a rate-limiting conformational transition associated with substrate recognition. Chem Biol Interact. 2013;202(1–3):78–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Chen Y, Orlicky DJ, Matsumoto A, Singh S, Thompson DC, Vasiliou V. Aldehyde dehydrogenase 1B1 (ALDH1B1) is a potential biomarker for human colon cancer. Biochem Biophys Res Commun. 2011;405(2):173–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Way MJ. Computational modelling of ALDH1B1 tetramer formation and the effect of coding variants. Chem Biol Interact. 2014;207:23.

    Article  CAS  PubMed  Google Scholar 

  45. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Larson HN, Weiner H, Hurley TD. Disruption of the coenzyme binding site and dimer interface revealed in the crystal structure of mitochondrial aldehyde dehydrogenase “Asian” variant. J Biol Chem. 2005;280(34):30550–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Larson HN, Zhou J, Chen Z, Stamler JS, Weiner H, Hurley TD. Structural and functional consequences of coenzyme binding to the inactive asian variant of mitochondrial aldehyde dehydrogenase: roles of residues 475 and 487. J Biol Chem. 2007;282(17):12940–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Oze I, Matsuo K, Hosono S, Ito H, Kawase T, Watanabe M, et al. Comparison between self-reported facial flushing after alcohol consumption and ALDH2 Glu504Lys polymorphism for risk of upper aerodigestive tract cancer in a Japanese population. Cancer Sci. 2010;101(8):1875–80.

    Article  CAS  PubMed  Google Scholar 

  49. Yokoyama A, Muramatsu T, Omori T, Yokoyama T, Matsushita S, Higuchi S, et al. Alcohol and aldehyde dehydrogenase gene polymorphisms and oropharyngolaryngeal, esophageal and stomach cancers in Japanese alcoholics. Carcinogenesis. 2001;22(3):433–9.

    Article  CAS  PubMed  Google Scholar 

  50. Muto M, Hitomi Y, Ohtsu A, Ebihara S, Yoshida S, Esumi H. Association of aldehyde dehydrogenase 2 gene polymorphism with multiple oesophageal dysplasia in head and neck cancer patients. Gut. 2000;47(2):256–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Jo SA, Kim EK, Park MH, Han C, Park HY, Jang Y, et al. A Glu487Lys polymorphism in the gene for mitochondrial aldehyde dehydrogenase 2 is associated with myocardial infarction in elderly Korean men. Clin Chim Acta. 2007;382(1–2):43–7.

    Article  CAS  PubMed  Google Scholar 

  52. Deak KL, Dickerson ME, Linney E, Enterline DS, George TM, Melvin EC, et al. Analysis of ALDH1A2, CYP26A1, CYP26B1, CRABP1, and CRABP2 in human neural tube defects suggests a possible association with alleles in ALDH1A2. Birth Defects Res A Clin Mol Teratol. 2005;73(11):868–75.

    Article  CAS  PubMed  Google Scholar 

  53. Akaboshi S, Hogema BM, Novelletto A, Malaspina P, Salomons GS, Maropoulos GD, et al. Mutational spectrum of the succinate semialdehyde dehydrogenase (ALDH5A1) gene and functional analysis of 27 novel disease-causing mutations in patients with SSADH deficiency. Hum Mutat. 2003;22(6):442–50.

    Article  CAS  PubMed  Google Scholar 

  54. Chambliss KL, Gray RG, Rylance G, Pollitt RJ, Gibson KM. Molecular characterization of methylmalonate semialdehyde dehydrogenase deficiency. J Inherit Metab Dis. 2000;23(5):497–504.

    Article  CAS  PubMed  Google Scholar 

  55. Rizzo WB, Carney G. Sjogren-Larsson syndrome: diversity of mutations and polymorphisms in the fatty aldehyde dehydrogenase gene (ALDH3A2). Hum Mutat. 2005;26(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  56. Palo OM, Soronen P, Silander K, Varilo T, Tuononen K, Kieseppa T, et al. Identification of susceptibility loci at 7q31 and 9p13 for bipolar disorder in an isolated population. Am J Med Genet B Neuropsychiatr Genet. 2010;153B(3):723–35.

    CAS  PubMed  Google Scholar 

  57. Xiao Q, Weiner H, Crabb DW. The mutation in the mitochondrial aldehyde dehydrogenase (ALDH2) gene responsible for alcohol-induced flushing increases turnover of the enzyme tetramers in a dominant fashion. J Clin Invest. 1996;98(9):2027–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors wish to thank the Computational Chemistry and Biology Core Facility at the University of Colorado Anschutz Medical Campus for their contributions to these studies. The authors wish to thank the laboratory of Dr. Tom Hurley (Indiana University, Indianapolis, IN) for providing the modified ALDH1B1 plasmid and for a critical reading of the manuscript. The Protein Production / Tissue Culture / MoAB Shared Resource at the University of Colorado Cancer Center provided expression of ALDH1B1 in eukaryotic cells, and is supported by the Cancer Center Support Grant (P30CA046934). This work was supported, in part, by the following NIH Grants—EY11490, AA021724, and AA022057. Fellowship support to B.C.J. (F31 AA020728) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasilis Vasiliou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Amino acid alignment of ALDH1B1 and ALDH2. An alignment was generated by T-COFFEE (23). Amino acids are classified as identical (*), highly similar (:), somewhat similar (.), or dissimilar ( ). Secondary structures are labeled by homology with ALDH2 with beta pleated sheets tinted blue and alpha helices tinted green. ALDH1B1 polymorphic variants are indicated by arrows and labeled as *2, *3, and *5. (PDF 54 kb)

Figure S2

Representative three dimensional docking poses for substrates of ALDH1B1. Amino acids of ALDH1B1 that make hydrogen bonds to the substrate are displayed as ball-and-stick figures and are labeled. Substrates are shown as stick figures (non-polar hydrogen atoms and bond order are not shown). Hydrogen bonds are shown as dashed green lines. (PDF 374 kb)

Figure S3

Scoring functions for ALDH1B1 wild type and variant homology models. Initial models were ranked by DOPE score, an unnormalized score with an arbitrary scale designed for choosing the most native-like model from multiple homology models (37). Also shown is the Z-score, a normalized DOPE score in which scores >0 indicate relatively poor models, and scores < −1 are considered more ‘native-like’. The minimization energy of the final minimized homology model is also shown. Positive numbers or large differences in this score between models might indicate some major defect in protein structure. (PDF 20 kb)

Figure S4

(PPTX 2.14 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jackson, B.C., Reigan, P., Miller, B. et al. Human ALDH1B1 Polymorphisms may Affect the Metabolism of Acetaldehyde and All-trans retinaldehyde—In Vitro Studies and Computational Modeling. Pharm Res 32, 1648–1662 (2015). https://doi.org/10.1007/s11095-014-1564-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1564-3

KEY WORDS

Navigation