Skip to main content

Advertisement

Log in

Oxidative Stress Protection by Exogenous Delivery of rhHsp70 Chaperone to the Retinal Pigment Epithelium (RPE), a Possible Therapeutic Strategy Against RPE Degeneration

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To measure the cytoprotective effects of rhHsp70 against oxidative stress and study its cellular uptake, intracellular and intraocular distribution in the retinal pigment epithelium.

Methods

Human retinal pigment epithelial cells (ARPE-19) were pre-treated with rhHsp70 for 24 h, 48 h, and 72 h before being exposed to 1.25 mM hydrogen peroxide. Non-treated cells served as control. We analysed interleukin 6 secretion, cell viability, and cytolysis. Uptake and intracellular distribution of fluorescently labelled rhHsp70 were investigated with flow cytometry and confocal microscopy, respectively. Ocular distribution of radioactively labelled rhHsp70 was followed ex vivo in porcine eyes by micro SPECT/CT.

Results

After exposure to hydrogen peroxide, IL-6 secretion decreased by 35–39% when ARPE-19 cells were pre-treated with rhHsp70. Cell viability increased by 17–32%, and cell lysis, measured by the release of lactate dehydrogenase, decreased by 6-43%. ARPE-19 cells endocytosed rhHsp70 added to the culture medium and the protein was localized in late endosomes and lysosomes. Following intravitreal injection into isolated porcine eyes, we found 20% rhHsp70 in the RPE.

Conclusions

Recombinant hHsp70 protein offers protection against oxidative stress. RPE cells take up the exogenously delivered rhHsp70 and localize it in late endosomes and lysosomes. This work provides the basis for a therapeutic strategy to target aggregate-associated neurodegeneration in AMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AMD:

Age-related macular degeneration

Hsp:

Heat shock protein

ROS:

Reactive oxygen species

RPE:

Retinal pigment epithelium

References

  1. de Jong PTVM. Mechanisms of disease: Age-related macular degeneration. N Engl J Med. 2006;355(14):1474–85.

    Article  PubMed  Google Scholar 

  2. Winkler BS, Boulton ME, Gottsch JD, Sternberg P. Oxidative damage and age-related macular degeneration. Mol Vis. 1999;5 (32–42.

  3. Kaarniranta K, Sinha D, Blasiak J, Kauppinen A, Vereb Z, Salminen A, et al. Autophagy and heterophagy dysregulation leads to retinal pigment epithelium dysfunction and development of age-related macular degeneration. Autophagy. 2013;9(7):973–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Jarrett SG, Boulton ME. Consequences of oxidative stress in age-related macular degeneration. Mol Aspects Med. 2012;33(4):399–417.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Feeney-Burns L, Hilderbrand ES, Eldridge S. Aging human RPE: morphometric analysis of macular, equatorial, and peripheral cells. Invest Ophthalmol Vis Sci. 1984;25(2):195–200.

    CAS  PubMed  Google Scholar 

  6. Sherman MY, Goldberg AL. Cellular defenses against unfolded proteins: A cell biologist thinks about neurodegenerative diseases. Neuron. 2001;29(1):15–32.

    Article  CAS  PubMed  Google Scholar 

  7. Calamini B, Morimoto RI. Protein homeostasis as a therapeutic target for diseases of protein conformation. Curr Top Med Chem. 2012;12(22):2623–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Ryhänen T, Hyttinen JMT, Kopitz J, Rilla K, Kuusisto E, Mannermaa E, et al. Crosstalk between Hsp70 molecular chaperone, lysosomes and proteasomes in autophagy-mediated proteolysis in human retinal pigment epithelial cells. J Cell Mol Med. 2009;13(9B):3616–31.

    Article  PubMed  Google Scholar 

  9. Morimoto RI. The heat shock response: systems biology of proteotoxic stress in aging and disease. Cold Spring Harb Symp Quant Biol. 2011;76 (91–99

  10. Heydari AR, Takahashi R, Gutsmann A, You S, Richardson A. Hsp70 and aging. Experientia. 1994;50(11–12):1092–8.

    Article  CAS  PubMed  Google Scholar 

  11. Locke M, Tanguay RM. Diminished heat shock response in the aged myocardium. Cell Stress Chaperones. 1996;1(4):251–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Muramatsu T, Hatoko M, Tada H, Shirai T, Ohnishi T. Age-related decrease in the inductability of heat shock protein 72 in normal human skin. Br J Dermatol. 1996;134(6):1035–8.

    Article  CAS  PubMed  Google Scholar 

  13. Katayama T, Imaizumi K, Honda A, Yoneda T, Kudo T, Takeda M, et al. Disturbed activation of endoplasmic reticulum stress transducers by familial Alzheimer's disease-linked presenilin-1 mutations. J Biol Chem. 2001;276(46):43446–54.

    Article  CAS  PubMed  Google Scholar 

  14. Cowan KJ, Diamond MI, Welch WJ. Polyglutamine protein aggregation and toxicity are linked to the cellular stress response. Hum Mol Genet. 2003;12(12):1377–91.

    Article  CAS  PubMed  Google Scholar 

  15. Wen FC, Li YH, Tsai HF, Lin CH, Li C, Liu CS, et al. Down-regulation of heat shock protein 27 in neuronal cells and non-neuronal cells expressing mutant ataxin-3. FEBS Lett. 2003;546(2–3):307–14.

    Article  CAS  PubMed  Google Scholar 

  16. Hay DG, Sathasivam K, Tobaben S, Stahl B, Marber M, Mestril R, et al. Progressive decrease in chaperone protein levels in a mouse model of Huntington's disease and induction of stress proteins as a therapeutic approach. Hum Mol Genet. 2004;13(13):1389–405.

    Article  CAS  PubMed  Google Scholar 

  17. Zourlidou A, Gidalevitz T, Kristiansen M, Landles C, Woodman B, Wells DJ, et al. Hsp27 overexpression in the R6/2 mouse model of Huntington's disease: chronic neurodegeneration does not induce Hsp27 activation. Hum Mol Genet. 2007;16(9):1078–90.

    Article  CAS  PubMed  Google Scholar 

  18. Nordgaard CL, Berg KM, Kapphahn R, Reilly C, Feng X, Olsen TW, et al. Proteomics of the retinal pigment epithelium reveals altered protein expression at progressive stages of age-related macular degeneration. Invest Ophthalmol Vis Sci. 2006;47(3):815–22.

    Article  PubMed  Google Scholar 

  19. Decanini A, Nordgaard CL, Feng X, Ferrington DA, Olsen TW. Changes in select redox proteins of the retinal pigment epithelium in age-related macular degeneration. Am J Ophthalmol. 2007;143(4):607–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Nordgaard CL, Karunadharma PP, Feng X, Olsen TW, Ferrington DA. Mitochondrial proteomics of the retinal pigment epithelium at progressive stages of age-related macular degeneration. Invest Ophthalmol Vis Sci. 2008;49(7):2848–55.

    Article  PubMed  Google Scholar 

  21. Strunnikova N, Baffi J, Gonzalez A, Silk W, Cousins SW, Csaky KG. Regulated heat shock protein 27 expression in human retinal pigment epithelium. Invest Ophthalmol Vis Sci. 2001;42(9):2130–8.

    CAS  PubMed  Google Scholar 

  22. Strunnikova N, Zhang C, Teichberg D, Cousins SW, Baffi J, Becker KG, et al. Survival of retinal pigment epithelium after exposure to prolonged oxidative injury: A detailed gene expression and cellular analysis. Invest Ophthalmol Vis Sci. 2004;45(10):3767–77.

    Article  PubMed  Google Scholar 

  23. Kurz T, Brunk UT. Autophagy of HSP70 and chelation of lysosomal iron in a non-redox-active form. Autophagy. 2009;5(1):93–5.

    Article  CAS  PubMed  Google Scholar 

  24. Karlsson M, Frennesson C, Gustafsson T, Brunk UT, Nilsson SEG, Kurz T. Autophagy of iron-binding proteins may contribute to the oxidative stress resistance of ARPE-19 cells. Exp Eye Res. 2013;116 (359–365.

  25. Bailey TA, Kanuga N, Romero IA, Greenwood J, Luthert PJ, Cheetham ME. Oxidative stress affects the junctional integrity of retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 2004;45(2):675–84.

    Article  PubMed  Google Scholar 

  26. Paimela T, Hyttinen JMT, Viiri J, Ryhänen T, Karjalainen RO, Salminen A, et al. Celastrol regulates innate immunity response via NF-kappa B and Hsp70 in human retinal pigment epithelial cells. Pharmacol Res. 2011;64(5):501–8.

    Article  CAS  PubMed  Google Scholar 

  27. Glenn JV, Mahaffy H, Dasari S, Oliver M, Chen M, Boulton ME, et al. Proteomic profiling of human retinal pigment epithelium exposed to an advanced glycation-modified substrate. Graefes Arch Clin Exp Ophthalmol. 2012;250(3):349–59.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Mannermaa E, Reinisalo M, Ranta VP, Vellonen KS, Kokki H, Saarikko A, et al. Filter-cultured ARPE-19 cells as outer blood-retinal barrier model. Eur J Pharm Sci. 2010;40(4):289–96.

    Article  CAS  PubMed  Google Scholar 

  29. Hansen MB, Nielsen SE, Berg K. Re-examination and further development of a precise and rapid Dye method for measuring cell-growth cell kill. J Immunol Methods. 1989;119(2):203–10.

    Article  CAS  PubMed  Google Scholar 

  30. Glover JR, Lindquist S. Hsp104, Hsp70, and Hsp40: A novel chaperone system that rescues previously aggregated proteins. Cell. 1998;94(1):73–82.

    Article  CAS  PubMed  Google Scholar 

  31. Goloubinoff P, Mogk A, Ben Zvi AP, Tomoyasu T, Bukau B. Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc Natl Acad Sci U S A. 1999;96(24):13732–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Mattoo RUH, Sharma SK, Priya S, Finka A, Goloubinoff P. Hsp110 is a bona fide chaperone using ATP to unfold stable misfolded polypeptides and reciprocally collaborate with Hsp70 to solubilize protein aggregates. J Biol Chem. 2013;288(29):21399–411.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Krohne TU, Liu ZP, Holz FG, Meyer CH. Intraocular pharmacokinetics of ranibizumab following a single intravitreal injection in humans. Am J Ophthalmol. 2012;154(4):682–6.

    Article  CAS  PubMed  Google Scholar 

  34. Xu L, Lu T, Tuomi L, Jumbe N, Lu JF, Eppler S, et al. Pharmacokinetics of ranibizumab in patients with neovascular Age-related macular degeneration: a population approach. Invest Ophthalmol Vis Sci. 2013;54(3):1616–24.

    Article  CAS  PubMed  Google Scholar 

  35. Sreekumar PG, Chothe P, Sharma KK, Baid R, Kompella U, Spee C, et al. Antiapoptotic properties of alpha-crystallin-derived peptide chaperones and characterization of their uptake transporters in human RPE cells. Invest Ophthalmol Vis Sci. 2013;54(4):2787–98.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Pitkänen L, Ruponen M, Nieminen J, Urtti A. Vitreous is a barrier in nonviral gene transfer by cationic lipids and polymers. Pharm Res. 2003;20(4):576–83.

    Article  PubMed  Google Scholar 

  37. Jiang C, Moore MJ, Zhang X, Klassen H, Langer R, Young M. Intravitreal injections of GDNF-loaded biodegradable microspheres are neuroprotective in a rat model of glaucoma. Mol Vis. 2007;13(198–99):1783–92.

    CAS  PubMed  Google Scholar 

  38. Checa-Casalengua P, Jiang CH, Bravo-Osuna I, Tucker BA, Molina-Martinez IT, Young MJ, et al. Retinal ganglion cells survival in a glaucoma model by GDNF/Vit E PLGA microspheres prepared according to a novel microencapsulation procedure. J Control Release. 2011;156(1):92–100.

    Article  CAS  PubMed  Google Scholar 

  39. Andrieu-Soler C, Aubert-Pouessel A, Doat M, Picaud S, Halhal M, Simonutti M, Venier-Julienne MC, Benoit JP, Behar-Cohen F. Intravitreous injection of PLGA microspheres encapsulating GDNF promotes the survival of photoreceptors in the rd1/rd1 mouse. Mol Vis. 2005;11 (118–20)

  40. Sakai T, Kuno N, Takamatsu F, Kimura E, Kohno H, Okano K, et al. Prolonged protective effect of basic fibroblast growth factor-impregnated nanoparticles in royal college of surgeons rats. Invest Ophthalmol Vis Sci. 2007;48(7):3381–7.

    Article  PubMed  Google Scholar 

  41. Abrishami M, Ganavati SZ, Soroush D, Rouhbakhsh M, Jaafari MR, Malaekeh-Nikouei B. Preparation, characterization, and in vivo evaluation of nanoliposomes-encapsulated bevacizumab (avastin) for intravitreal administration. Retina-J Ret Vit Dis. 2009;29(5):699–703.

    Google Scholar 

  42. Zhang K, Hopkins JJ, Heier JS, Birch DG, Halperin LS, Albini TA, et al. Ciliary neurotrophic factor delivered by encapsulated cell intraocular implants for treatment of geographic atrophy in age-related macular degeneration. Proc Natl Acad Sci U S A. 2011;108(15):6241–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Ninawe PR, Hatziavramidis D, Parulekar SJ. Delivery of drug macromolecules from thermally responsive gel implants to the posterior eye. Chem Eng Sci. 2010;65(18):5170–7.

    Article  CAS  Google Scholar 

  44. Kavousanakis ME, Kalogeropoulos NG, Hatziavramidis DT. Computational modeling of drug delivery to the posterior eye. Chem Eng Sci. 2014;108 (203–212.

Download references

Acknowledgments

We would like to thank Ms. Leena Pietilä at the Centre for Drug Research, University of Helsinki and Ms. Anne Seppänen at the Department of Ophthalmology, University of Eastern Finland for technical assistance, the Light Microscopy Unit of the Institute of Biotechnology at the University of Helsinki for help with confocal microscopy, Dr. Mari Raki for operating the micro SPECT/CT, and Dr. Shuang Wang for assistance in image analysis. We also acknowledge the Finnish Funding Agency for Innovation (Tekes), the Friends of the Blind foundation (Sokeain Ystävät ry), Evald and Hilda Nissi foundation, Orion-Farmos research foundation, and Academy of Finland (decision no. 136805) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Astrid Subrizi.

Additional information

Subrizi and Toropainen have contributed equally to this work

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(GIF 1523 kb)

ESM 2

(GIF 994 kb)

ESM 3

(GIF 950 kb)

ESM 4

(GIF 1165 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subrizi, A., Toropainen, E., Ramsay, E. et al. Oxidative Stress Protection by Exogenous Delivery of rhHsp70 Chaperone to the Retinal Pigment Epithelium (RPE), a Possible Therapeutic Strategy Against RPE Degeneration. Pharm Res 32, 211–221 (2015). https://doi.org/10.1007/s11095-014-1456-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1456-6

KEY WORDS

Navigation