Skip to main content

Advertisement

Log in

The Development of Drug-Free Therapy for Prevention of Dental Caries

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The purpose of this study was to develop a novel, drug-free therapy that can reduce the over-accumulation of cariogenic bacteria on dental surfaces.

Methods

We designed and synthesized a polyethylene glycol (PEG)-based hydrophilic copolymer functionalized with a pyrophosphate (PPi) tooth-binding anchor using “click” chemistry. The polymer was then evaluated for hydroxyapatite (HA) binding kinetics and capability of reducing bacteria adhesion to artificial tooth surface.

Results

The PPi-PEG copolymer can effectively inhibit salivary protein adsorption after rapid binding to an artificial tooth surface. As a result, the in vitro S. mutans adhesion study showed that the PPi-PEG copolymer can inhibit saliva protein-promoted S. mutans adhesion through the creation of a neutral, hydrophilic layer on the artificial tooth surface.

Conclusions

The results suggested the potential application of a PPi-PEG copolymer as a drug-free alternative to current antimicrobial therapy for caries prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CFU:

Colony forming units

Click-PEG:

Multifunctional polyethylene glycol copolymer synthesized using click chemistry

DCC:

N,N’-dicyclohexylcarbodiimide

DCM:

Dichloromethane

DMAP:

4-dimethylaminopyridine

DMF:

Dimethylformamide

EDTA:

Ethylenediaminetetraacetic acid

GRAS:

Generally regarded as safe

HA:

Hydroxyapatite

HMHP:

PPi-PEG copolymer with high MW and high pyrophosphate content

HMLP:

PPi-PEG copolymer with high MW and low pyrophosphate content

IRB:

Institutional review board

LMHP:

PPi-PEG copolymer with low MW and high pyrophosphate content

LMLP:

PPi-PEG copolymer with low MW and low pyrophosphate content

MW:

Molecular weight

PDI:

Polydispersity index

PEG:

Polyethylene glycol

PPi:

Pyrophosphate

PPi-PEG:

Pyrophosphate modified click-PEG

S. mutans :

Streptococcus mutans

TBAP:

Tris(tetra-n-butylammonium) hydrogen pyrophosphate

THYE:

Todd Hewitt-yeast extract

REFERENCES

  1. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol. 2005;43:5721–32.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Faveri M, Mayer MP, Feres M, de Figueiredo LC, Dewhirst FE, Paster BJ. Microbiological diversity of generalized aggressive periodontitis by 16S rRNA clonal analysis. Oral Microbiol Immunol. 2008;23:112–8.

    Article  PubMed  CAS  Google Scholar 

  3. Marsh PD, Moter A, Devine DA. Dental plaque biofilms: communities, conflict and control. Periodontol. 2000;55:16–35.

    Article  Google Scholar 

  4. Baehniand PC, Takeuchi Y. Anti-plaque agents in the prevention of biofilm-associated oral diseases. Oral Dis. 2003;9 Suppl 1:23–9.

    Google Scholar 

  5. Loe H, Theilade E, Jensen SB. Experimental gingivitis in man. J Periodontol. 1965;36:177–87.

    Article  PubMed  CAS  Google Scholar 

  6. Gunsolley JC. A meta-analysis of six-month studies of antiplaque and antigingivitis agents. J Am Dent Assoc. 2006;137:1649–57.

    Article  PubMed  CAS  Google Scholar 

  7. van der Mei HC, White DJ, Atema-Smit J, van de Belt-Gritter E, Busscher HJ. A method to study sustained antimicrobial activity of rinse and dentifrice components on biofilm viability in vivo. J Clin Periodontol. 2006;33:14–20.

    Article  PubMed  Google Scholar 

  8. Marshand PD, Bradshaw DJ. Dental plaque as a biofilm. J Ind Microbiol. 1995;15:169–75.

    Article  Google Scholar 

  9. Creeth JE, Abraham PJ, Barlow JA, Cummins D. Oral delivery and clearance of antiplaque agents from Triclosan-containing dentifrices. Int Dent J. 1993;43:387–97.

    PubMed  CAS  Google Scholar 

  10. Marsh PD. Are dental diseases examples of ecological catastrophes? Microbiology. 2003;149:279–94.

    Article  PubMed  CAS  Google Scholar 

  11. Marsh PD. Dental plaque as a microbial biofilm. Caries Res. 2004;38:204–11.

    Article  PubMed  CAS  Google Scholar 

  12. Yazdankhah SP, Scheie AA, Hoiby EA, Lunestad BT, Heir E, Fotland TO, et al. Triclosan and antimicrobial resistance in bacteria: an overview. Microb Drug Resist. 2006;12:83–90.

    Article  PubMed  CAS  Google Scholar 

  13. Taubmanand MA, Nash DA. The scientific and public-health imperative for a vaccine against dental caries. Nat Rev Immunol. 2006;6:555–63.

    Article  Google Scholar 

  14. Shimotoyodome A, Koudate T, Kobayashi H, Nakamura J, Tokimitsu I, Hase T, et al. Reduction of Streptococcus mutans adherence and dental biofilm formation by surface treatment with phosphorylated polyethylene glycol. Antimicrob Agents Chemother. 2007;51:3634–41.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Johnston EE, Bryers JD, Ratner BD. Plasma deposition and surface characterization of oligoglyme, dioxane, and crown ether nonfouling films. Langmuir. 2005;21:870–81.

    Article  PubMed  CAS  Google Scholar 

  16. Pidhatika B, Rodenstein M, Chen Y, Rakhmatullina E, Muhlebach A, Acikgoz C, et al. Comparative stability studies of poly(2-methyl-2-oxazoline) and poly(ethylene glycol) brush coatings. Biointerphases. 2012;7:1.

    Article  PubMed  CAS  Google Scholar 

  17. Qi W, Joshi S, Weber CR, Wali RK, Roy HK, Savkovic SD. Polyethylene glycol diminishes pathological effects of Citrobacter rodentium infection by blocking bacterial attachment to the colonic epithelia. Gut Microbes. 2011;2(5):267–73.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Carles J. Colorimetric microdetermination of phosphorus. Bull Soc Chim Biol (Paris). 1956;38:255–7.

    CAS  Google Scholar 

  19. Murchison HH, Barrett JF, Cardineau GA, Curtiss 3rd R. Transformation of Streptococcus mutans with chromosomal and shuttle plasmid (pYA629) DNAs. Infect Immun. 1986;54:273–82.

    PubMed  CAS  PubMed Central  Google Scholar 

  20. Biswas I, Drake L, Biswas S. Regulation of gbpC expression in Streptococcus mutans. J Bacteriol. 2007;189:6521–31.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Jett BD, Hatter KL, Huycke MM, Gilmore MS. Simplified agar plate method for quantifying viable bacteria. Biotechniques. 1997;23:648–50.

    PubMed  CAS  Google Scholar 

  22. Marsh PD. Controlling the oral biofilm with antimicrobials. J Dent. 2010;38 Suppl 1:S11–5.

    Article  PubMed  CAS  Google Scholar 

  23. Liu XM, Thakur A, Wang D. Efficient synthesis of linear multifunctional poly(ethylene glycol) by copper(I)-catalyzed Huisgen 1,3-dipolar cycloaddition. Biomacromolecules. 2007;8:2653–8.

    Article  PubMed  CAS  Google Scholar 

  24. U.S. FDA Website. http://www.fda.gov.

  25. Hein CD, Liu XM, Chen F, Cullen DM, Wang D. The synthesis of a multiblock osteotropic polyrotaxane by copper(I)-catalyzed huisgen 1,3-dipolar cycloaddition. Macromol Biosci. 2010;10:1544–56.

    Article  PubMed  CAS  Google Scholar 

  26. Kandori K, Oda S, Tsuyama S. Effects of pyrophosphate ions on protein adsorption onto calcium hydroxyapatite. J Phys Chem B. 2008;112:2542–7.

    Article  PubMed  CAS  Google Scholar 

  27. Moreno EC, Kresak M, Hay DI. Adsorption of molecules of biological interest onto hydroxyapatite. Calcif Tissue Int. 1984;36:48–59.

    Article  PubMed  CAS  Google Scholar 

  28. Rosenberg M, Judes H, Weiss E. Cell surface hydrophobicity of dental plaque microorganisms in situ. Infect Immun. 1983;42:831–4.

    PubMed  CAS  PubMed Central  Google Scholar 

  29. Shimotoyodome A, Kobayashi H, Tokimitsu I, Matsukubo T, Takaesu Y. Statherin and histatin 1 reduce parotid saliva-promoted Streptococcus mutans strain MT8148 adhesion to hydroxyapatite surfaces. Caries Res. 2006;40:403–11.

    Article  PubMed  CAS  Google Scholar 

  30. Vinogradov AM, Winston M, Rupp CJ, Stoodley P. Rheology of biofilms formed from the dental plaque pathogen Streptococcus mutans. Biofilm. 2004;1:49–56.

    Article  Google Scholar 

  31. Olsson J, Carlen A, Holmberg K. Inhibition of Streptococcus mutans adherence by means of surface hydrophilization. J Dent Res. 1990;69:1586–91.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was supported in part by NIH grants R03 DE019179 (KCR), R01 AI038901 (KWB) and Nebraska Research Initiative (NRI) Proof-of-Concept Award (DW). FC also acknowledges the graduate fellowship support from University of Nebraska Medical Center. The authors of this article declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Wang.

Additional information

Fu Chen and Zhenshan Jia contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Jia, Z., Rice, K.C. et al. The Development of Drug-Free Therapy for Prevention of Dental Caries. Pharm Res 31, 3031–3037 (2014). https://doi.org/10.1007/s11095-014-1396-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1396-1

KEY WORDS

Navigation