Skip to main content

Advertisement

Log in

Enhancement of the Physical Stability of Amorphous Indomethacin by Mixing it with Octaacetylmaltose. Inter and Intra Molecular Studies

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To demonstrate a very effective and easy way of stabilization of amorphous indomethacin (IMC) by preparing binary mixtures with octaacetylmaltose (acMAL). In order to understand the origin of increased stability of amorphous system inter- and intramolecular interactions between IMC and acMAL were studied.

Methods

The amorphous IMC, acMAL and binary mixtures (IMC–acMAL) with different weight ratios were analyzed by using Dielectric Spectroscopy (DS), Differential Scanning Calorimetry (DSC), Raman Spectroscopy, X-ray Diffraction (XRD), Infrared Spectroscopy (FTIR) and Quantitative Structure–Activity Relationship (QSAR).

Results

Our studies have revealed that indomethacin mixed with acetylated saccharide forms homogeneous mixture. Interestingly, even a small amount of modified maltose prevents from recrystallization of amorphous indomethacin. FTIR measurements and QSAR calculations have shown that octaacetylmaltose significantly affects the concentration of indomethacin dimers. Moreover, with increasing the amount of acMAL in the amorphous solid dispersion molecular interactions between matrix and API become more dominant than IMC-IMC ones. Structural investigations with the use of X-ray diffraction technique have demonstrated that binary mixture of indomethacin with acMAL does not recrystallize upon storage at room temperature for more than 1.5 year. Finally, it was shown that acMAL can be used to improve solubility of IMC.

Conclusions

Acetylated derivative of maltose might be very effective agent to improve physical stability of amorphous indomethacin as well as to enhance its solubility. Intermolecular interactions between modified carbohydrate and IMC are likely to be responsible for increased stability effect in the glassy state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

REFERENCES

  1. Schuna AA. Update on treatment of rheumatoid arthritis. J Am Pharm Assoc. 1998;38:728–35.

    CAS  Google Scholar 

  2. Sweetman SC. Martindale: the complete drug reference. London: Pharmaceutical Press; 2005. p. 47.

    Google Scholar 

  3. Rodriguez LA, Varas C, Patrono C. Differential effects of aspirin and non-aspirin nonsteroidal antiinflammatory drugs in the primary prevention of myocardial infarction in postmenopausal women. Epidemiology. 2000;11:382–7.

    Google Scholar 

  4. Flynn BL, Theesen KA. Pharmacologic management of Alzheimer disease part III: nonsteroidal antiinflammatory drugs–emerging protective evidence? Ann Pharmacother. 1999;33:840–9.

    PubMed  CAS  Google Scholar 

  5. Jones MK, Wang H, Peskar BM, Levin E, Itani RM, Sarfels IJ, et al. Inhibition of angiogenesis by nonsteroidal anti-inflammatory drugs: insight into mechanisms and implications for cancer growth and ulcer healing. Nat Med. 1999;5:1418–23.

    PubMed  CAS  Google Scholar 

  6. Simmons DL, Botting RM, Hla T. Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharm Rev. 2004;56:387–437.

    PubMed  CAS  Google Scholar 

  7. Weigert G, Berisha F, Resch H, Karl K, Schmetterer L, Garhofer G. Effect of unspecific inhibition of cyclooxygenase by indomethacin on retinal and choroidal blood flow. Invest Ophthalmol Vis Sci. 2008;49:1065–70.

    PubMed  Google Scholar 

  8. Yamamoto T, Nozaki-Taguchi N. Analysis of the effects of cyclooxygenase (COX)-1 and COX-2 in spinal nociceptive transmission using indomethacin, a non-selective COX inhibitor, and NS-398, a COX-2 selective inhibitor. Brain Res. 1996;739:104–10.

    PubMed  CAS  Google Scholar 

  9. Dressman J, Butler J, Hempenstall J, Reppas C. The BCS: where do we go from here. Pharm Technol. 2001;25:68–76.

    CAS  Google Scholar 

  10. Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12:413–20.

    PubMed  CAS  Google Scholar 

  11. Lobenberg R, Amidon GL. Modern bioavailability, bioequivalence and biopharmaceutics classification system; new scientific approaches to international regulatory standards. Eur J Pharm Biopharm. 2000;50:3–12.

    PubMed  CAS  Google Scholar 

  12. Ford JL. The current status of solid dispersions. Pharm Acta Helv. 1986;61:69–88.

    PubMed  CAS  Google Scholar 

  13. Hancock BC, Zografi G. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci. 1997;86:1–12.

    PubMed  CAS  Google Scholar 

  14. Martin A. Physical pharmacy. 4th ed. Philadelphia: Lea and Febiger; 1993.

    Google Scholar 

  15. Kaminski K, Kaminska E, Adrjanowicz K, Grzybowska K, Wlodarczyk P, Paluch M, et al. Dielectric relaxation studies on Tramadol monohydrate and its hydrochloride salt. J Pharm Sci. 2010;99:94–106.

    PubMed  CAS  Google Scholar 

  16. Adrjanowicz K, Kaminski K, Paluch M, Wlodarczyk P, Grzybowska K, Wojnarowska Z, et al. Dielectric relaxation studies and dissolution behavior of amorphous verapamil hydrochloride. J Pharm Sci. 2010;99:828–39.

    PubMed  CAS  Google Scholar 

  17. Hancock BC, Parks M. What is the true solubility advantage for amorphous pharmaceuticals. Pharm Res. 2000;17:393–414.

    Google Scholar 

  18. Taylor LS, Zografi G. Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharm Res. 1997;14:1691–8.

    PubMed  CAS  Google Scholar 

  19. Adrjanowicz K, Zakowiecki D, Kaminski K, Hawelek L, Grzybowska K, Tarnacka M, et al. Molecular dynamics in supercooled liquid and glassy states of antibiotics: azithromycin, clarithromycin and roxithromycin studied by dielectric spectroscopy. Advantages given by the amorphous state. Mol Pharm. 2012;9:1748–63.

    PubMed  CAS  Google Scholar 

  20. Serajuddin AT. Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J Pharm Sci. 1999;88:1058–66.

    PubMed  CAS  Google Scholar 

  21. Leuner C, Dressman J. Improving drug solubility for oraldelivery using solid dispersions. Eur J Pharm Biopharm. 2000;50:47–60.

    PubMed  CAS  Google Scholar 

  22. Valizadeh H, Nokhodchi A, Qarakhani N, Zakeri-Milani P, Azarmi S, Hassanzadeh D, et al. Physicochemical characterization of solid dispersions of indomethacin with PEG 6000, Myrj 52, lactose, sorbitol, dextrin, and Eudragit E100. Drug Dev Ind Pharm. 2004;30:303–17.

    PubMed  CAS  Google Scholar 

  23. Jung MS, Kim JS, Kim MS, Alhalaweh A, Cho W, Hwang SJ, et al. Bioavailability of indomethacin-saccharin cocrystals. J Pharm Pharmacol. 2010;62:1560–8.

    PubMed  CAS  Google Scholar 

  24. Sato T, Okada A, Sdekiguchi K, Tsuda Y. Differences in physicopharmaceutical properties between crystalline and noncrystalline 9,3’diacetylmidecamycin. Chem Pharm Bull. 1981;29:2675–82.

    CAS  Google Scholar 

  25. Fukuoka E, Makita M, Yamamura S. Some physicochemical properties of glassy indomethacin. Chem Pharm Bull. 1986;34:4314–21.

    PubMed  CAS  Google Scholar 

  26. Bhardwaj SP, Suryanarayanan R. Molecular mobility as an effective predictor of the physical stability of amorphous trehalose. Mol Pharm. 2012;9:3209–17.

    PubMed  CAS  Google Scholar 

  27. Corrigan OI, Holohan EM, Sabra K. Amorphous forms of thiazide diuretics prepared by spray-drying. Int J Pharm. 1984;18:195–200.

    CAS  Google Scholar 

  28. Craig DQM, Royall PG, Kett VL, Hoptopn ML. The relevance of the amorphous state to pharmaceutical dosage forms: glassy drugs and freeze dried systems. Int J Pharm. 1999;179:179–207.

    PubMed  CAS  Google Scholar 

  29. Adrjanowicz K, Kaminski K, Grzybowska K, Hawelek L, Paluch M, Gruszka I, et al. Effect of cryogrinding on chemical stability of the sparingly water-soluble drug furosemide. Pharm Res. 2011;28:3220–36.

    PubMed  CAS  PubMed Central  Google Scholar 

  30. Hedoux A, Guinet Y, Capet F, Paccou L, Decamps M. Evidence for a high-density amorphous form in indomethacin from Raman scattering investigations. Phys Rev B. 2008;77:094205.

    Google Scholar 

  31. Wojnarowska Z, Adrjanowicz K, Wlodarczyk P, Kaminska E, Kaminski K, Grzybowska K, et al. Broadband dielectric relaxation study at ambient and elevated pressure of molecular dynamics of pharmaceutical: indomethacin. J Phys Chem B. 2009;113:12536.

    PubMed  CAS  Google Scholar 

  32. Dawsona KJ, Kearns KL, Lian Y, Steffenc W, Ediger MD. Physical vapor deposition as a route to hidden amorphous states. Proc Natl Acad Sci U S A. 2009;106:15165–70.

    Google Scholar 

  33. Kearns KL, Swallen SF, Ediger MD, Wu T, Yu L. Influence of substrate temperature on the stability of glasses prepared by vapor deposition. J Chem Phys. 2007;127:154702.

    PubMed  Google Scholar 

  34. Kearns KL, Swallen SF, Ediger MD, Sun Y, Yu L. Calorimetric evidence for two distinct molecular packing arrangements in stable glasses of indomethacin. J Phys Chem B. 2009;113:1579–86.

    PubMed  CAS  Google Scholar 

  35. Babu NJ, Nangia A. Solubility advantage of amorphous drugs and pharmaceutical cocrystals. Cryst Growth Des. 2011;11:2662–79.

    CAS  Google Scholar 

  36. Murdande SB, Pikal MJ, Shanker RM, Bogner RH. Solubility advantage of amorphous pharmaceuticals: II. Application of quantitative thermodynamic relationships for prediction of solubility enhancement in structurally diverse insoluble pharmaceuticals. Pharm Res. 2010;27:2704–14.

    PubMed  CAS  Google Scholar 

  37. Karmwar P, Graeser K, Gordon KC, Strachan CJ, Rades T. Effect of different preparation methods on the dissolution behaviour of amorphous indomethacin. Eur J Pharm Biopharm. 2012;80:459–64.

    PubMed  CAS  Google Scholar 

  38. Pikal MJ, Lukes AL, Lang JE, Gaines K. Quantitative crystallinity determinations for beta-lactam antibiotics by solution calorimetry: correlations with stability. J Pharm Sci. 1978;67:767.

    PubMed  CAS  Google Scholar 

  39. Hancock BC, Carlson GT, Ladipo DD, Langdon BA, Mullarney MP. Comparison of the mechanical properties of the crystalline and amorphous forms of a drug substance. Int J Pharm. 2002;241:73–85.

    PubMed  CAS  Google Scholar 

  40. Yoshioka M, Hancock BC, Zografi G. Crystallization of indomethacin from the amorphous state below and above its glass transition temperature. J Pharm Sci. 1994;83:1700–5.

    PubMed  CAS  Google Scholar 

  41. Shamblin SL, Hancock BC, Pikal MJ. Coupling between chemical reactivity and structural relaxation in pharmaceutical glasses. Pharm Res. 2006;23:2254–68.

    PubMed  CAS  Google Scholar 

  42. Wojnarowska Z, Grzybowska K, Adrjanowicz K, Kaminski K, Paluch M, Hawelek L, et al. Study of the amorphous glibenclamide drug: analysis of the molecular dynamics of quenched and cryomilled material. Mol Pharm. 2010;7:1692–707.

    PubMed  CAS  Google Scholar 

  43. Hancock BC, Shamblin SL, Zografi G. Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures. Pharm Res. 1995;1:799–806.

    Google Scholar 

  44. Tian W, Lian Y. Origin of enhanced crystal growth kinetics near Tg probed with indomethacin polymorphs. J Phys Chem B. 2006;110:15694–9.

    Google Scholar 

  45. Hancock BC, Shamblin SL. Molecular mobility of amorphous pharmaceuticals determined using differential scanning calorimetry. Thermochim Acta. 2001;380:95.

    CAS  Google Scholar 

  46. Vyazovkin S, Dranca I. Effect of physical aging on nucleation of amorphous indomethacin. J Phys Chem B. 2007;111:7283–7.

    PubMed  CAS  Google Scholar 

  47. Shamblin SL, Tang X, Chang L, Hancock BC, Pikal MJ. Characterization of the time scales of molecular motion in pharmaceutically important glasses. J Phys Chem B. 1999;103:4113.

    CAS  Google Scholar 

  48. Hancock BC, Dupuis Y, Thibert R. Determination of the viscosity of an amorphous drug using thermomechanical analysis (TMA). Pharm Res. 1999;16:672.

    PubMed  CAS  Google Scholar 

  49. DeGusseme A, Carpentier L, Willart JF, Descamps M. Molecular mobility in supercooled trehalose. J Phys Chem B. 2003;107:10879–86.

    CAS  Google Scholar 

  50. He R, Craig DQM. An investigation into the thermal behaviour of an amorphous drug using low frequency dielectric spectroscopy and modulated. J Pharm Pharmacol. 2001;53:41.

    PubMed  Google Scholar 

  51. Carpentier L, Decressain R, Desprez S, Descamps M. Dynamics of the amorphous and crystalline alpha-, gamma-phases of indomethacin. J Phys Chem B. 2006;110:457–64.

    PubMed  CAS  Google Scholar 

  52. Bhugra C, Shmeis R, Krill SL, Pikal MJ. Different measures of molecular mobility: comparison between calorimetric and thermally stimulated current relaxation times below Tg and correlation with dielectric relaxation times above Tg. J Pharm Sci. 2008;97:4498–515.

    PubMed  CAS  Google Scholar 

  53. Correia NT, Moura Ramos JJ, Descamps M, Collins G. Molecular mobility and fragility in indomethacin: a thermally stimulated depolarisation currents study. Pharm Res. 2001;18:1767–74.

    PubMed  CAS  Google Scholar 

  54. Moura Ramos JJ, Correia NT, Taveira-Marques R, Collins G. The activation energy at Tg and the fragility index of indomethacin, predicted from the influence of the heating rate on the temperature positron and on the intensity of the thermally stimulated depolarisation current peak. Pharm Res. 2002;19:1879–84.

    CAS  Google Scholar 

  55. Savolainen M, Heinz A, Strachan C, Gordon KC, Yliruusi J, Rades T, et al. Screening for differences in the amorphous state of indomethacin using multivariate visualization. Eur J Pharm Sci. 2007;30:113–23.

    PubMed  CAS  Google Scholar 

  56. Crowley KJ, Zografi G. Cryogenic grinding of indomethacin polymorphs and solvates: assessment of amorphous phase formation and amorphous phase physical stability. J Pharm Sci. 2002;91:492–507.

    PubMed  CAS  Google Scholar 

  57. Planinsek O, Zadnik J, Kunaver M, Srcic S, Godec A. Structural evolution of indomethacin particles upon milling: time-resolved quantification and localization of disordered structure studied by IGC and DSC. J Pharm Sci. 2010;99:1968–81.

    PubMed  CAS  Google Scholar 

  58. Greco K, Bogner R. Crystallization of amorphous indomethacin during dissolution: effect of processing and annealing. Mol Pharm. 2010;7:1406–18.

    PubMed  CAS  Google Scholar 

  59. Karmwar P, Graeser K, Gordon KC, Strachan CJ, Rades T. Investigation of properties and recrystallisation behaviour of amorphous indomethacin samples prepared by different methods. Int J Pharm. 2011;417:94–100.

    PubMed  CAS  Google Scholar 

  60. Bates S, Zografi G, Engers D, Morris K, Crowley K, Newman A. Analysis of amorphous and nanocrystalline solids from their x-ray diffraction patterns. Pharm Res. 2006;23:2333–49.

    PubMed  CAS  Google Scholar 

  61. Dalal SS, Ediger MD. Molecular orientation in stable glasses of indomethacin. J Phys Chem Lett. 2012;3:1229–33.

    CAS  Google Scholar 

  62. Tetsumi I, Uekama K. Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation. J Pharm Sci. 1997;86:147–62.

    Google Scholar 

  63. Lofsson T, Masson M. Cyclodextrins in topical drug formulations: theory and practice. Int J Pharm. 2001;22:15–30.

    Google Scholar 

  64. Lakshman JP, Cao Y, Kowalski J, Serajuddin AT. Application of melt extrusion in the development of a physically and chemically stable high-energy amorphous solid dispersion of a poorly water-soluble drug. Mol Pharm. 2008;5:994–1002.

    PubMed  CAS  Google Scholar 

  65. Kaushal AM, Gupta P, Bansal AK. Amorphous drug delivery systems: molecular aspects, design and performance. Crit Rev Ther Drug Carrier Syst. 2004;21:133–93.

    PubMed  CAS  Google Scholar 

  66. Van den Mooter G, Wuyts M, Blaton N, Busson R, Grobet P, Augustijns P, et al. Physical stabilisation of amorphous ketoconazole in solid dispersions with polyvinylpyrrolidone K25. Eur J Pharm Sci. 2001;12:261–9.

    PubMed  Google Scholar 

  67. Wang X, de Armas HN, Blaton N, Michoel A, Van den Mooter G. Phase characterization of indomethacin in binary solid dispersions with PVP VA64 or Myrj 52. Int J Pharm. 2007;345:95–100.

    PubMed  CAS  Google Scholar 

  68. Khodaverdi E, Khalili N, Zangiabadi F, Homayouni A. Preparation, characterization and stability studies of glassy solid dispersions of indomethacin using PVP and isomalt as carriers. Iran J Basic Med Sci. 2012;15:820–32.

    PubMed  CAS  PubMed Central  Google Scholar 

  69. Backensfeld T, Müller BW, Wiese M, Seydel JK. Effect of cyclodextrin derivatives on indomethacin stability in aqueous solution. Pharm Res. 1990;7:484–90.

    PubMed  CAS  Google Scholar 

  70. Bogdanova S, Bontcheva E, Avramova N. Phase characterization of indomethacin in adsorbates onto hydroxyethylcellulose. Drug Dev Ind Pharm. 2007;33:900–6.

    PubMed  CAS  Google Scholar 

  71. Ghanem AH, El-Sabbagh H, Abdel-Alim H. Stability of indomethacin solubilized system. Pharmazie. 1979;34:406–7.

    PubMed  CAS  Google Scholar 

  72. Shamblin SL. The characteristics of sucrose-polymer mixtures in the amorphous state. Ph. D. Dissertation, The University of Wisconsins Madison, 1997.

  73. Grzybowska K, Kaminski K, Paluch M, Hawelek L. Patent application “The composite based on celecoxib and method of formulation”, date of application: 19.04.2011 r., No. of application: P.394614.

  74. Grzybowska K, Paluch M, Wlodarczyk P, Grzybowski A, Kaminski K, Hawelek L, et al. Enhancement of amorphous celecoxib stability by mixing it with octaacetylmaltose: the molecular dynamics study. Mol Pharm. 2012;9:894–904.

    PubMed  CAS  Google Scholar 

  75. Kaminska E, Adrjanowicz K, Kaminski K, Wlodarczyk P, Hawelek L, Kolodziejczyk K, et al. A new way of stabilization of furosemide upon cryogenic grinding by using acylated saccharides matrices. The role of hydrogen bonds in decomposition mechanism. Mol Pharm. 2013;10:1824–35.

    PubMed  CAS  Google Scholar 

  76. Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;98:5648–52.

    CAS  Google Scholar 

  77. Parr RG, Yang W. Density-functional theory of the electronic structure of molecules. Annu Rev Phys Chem. 1995;46:701–28.

    PubMed  CAS  Google Scholar 

  78. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988;37:785–9.

    CAS  Google Scholar 

  79. Hehre WJ, Radom L, Schleyer PR, Pople JA. Ab initio molecular orbital theory. New York: Wiley; 1986. p. 20–9. 65–88.

    Google Scholar 

  80. Parr RG, Yang W. Density functional theory of atoms and molecules. New York: Oxford University Press; 1989. p. 142–97.

    Google Scholar 

  81. Burke K, Perdew JP, Wang Y. In: Dobson JF, Vignale G, Das MP, editors. Electronic density functional theory: recent progress and new directions. New York: Plenum; 1998.

    Google Scholar 

  82. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 03W, Revision B. 05, Gaussian Inc., Pittsburgh PA, 2003.

  83. Mahieu A, Willart JF, Dudognon E, Danède F, Descamps M. A new protocol to determine the solubility of drugs into polymer matrixes. Mol Pharm. 2013;10:560–6.

    PubMed  CAS  Google Scholar 

  84. Kaminski K, Wlodarczyk P, Havelek L, Adrjanowicz K, Wojnarowska Z, Paluch M, et al. Comparative dielectric studies on two hydrogen-bonded and van der Waals liquids. Phys Rev E. 2011;83:061506.

    CAS  Google Scholar 

  85. Blochowicz T, Rössler EA. Beta relaxation versus high frequency wing in the dielectric spectra of a binary molecular glass former. Phys Rev Lett. 2004;92:225701.

    PubMed  CAS  Google Scholar 

  86. Roland CM, Ngai KL. Segmental relaxation and the correlation of time and temperature dependencies in poly (vinyl methyl ether)/polystyrene mixtures. Macromolecules. 1992;25:363–7. Dynamical heterogeneity in a miscible polymer blend. Macromolecules. 1991;24:2261–5.

    CAS  Google Scholar 

  87. Capaccioli S, Kessairi K, Prevosto D, Lucchesi M, Ngai KL. Genuine Johari–Goldstein β-relaxations in glass-forming binary mixtures. J Non-Cryst Solids. 2006;352:4643–8.

    CAS  Google Scholar 

  88. Capaccioli S, Prevosto D, Kessairi K, Lucchesi M, Rolla P. Relation between the dispersion of α-relaxation and the time scale of β-relaxation at the glass transition. J Non-Cryst Solids. 2007;353:3984–8.

    CAS  Google Scholar 

  89. Kessairi K, Capaccioli S, Prevosto D, Lucchesi M, Rolla PA. Relaxation dynamics in tert-butylpyridine/tristyrene mixture investigated by broadband dielectric spectroscopy. J Chem Phys. 2007;127:174502.

    PubMed  Google Scholar 

  90. Kessairi K, Capaccioli S, Prevosto D, Sharifi S, Rolla PA. Effect of temperature and pressure on the structural (α-) and the true Johari–Goldstein (β-) relaxation in binary mixtures. J Non-Cryst Solids. 2007;353:4273–7.

    CAS  Google Scholar 

  91. Power G, Vij JK, Johari GP. Relaxations and nano-phase-separation in ultraviscous heptanol-alkyl halide mixture. J Chem Phys. 2007;126:034512.

    PubMed  CAS  Google Scholar 

  92. Kremer F, Schönhals A (eds). Broadband dielectric spectroscopy. Springer-Verlag, 2003, ISBN 978-3-540-43407-8.

  93. Williams G, Watts DC. Non-symmetrical dielectric relaxation behavior arising from a simple empirical decay function. Trans Faraday Soc. 1970;66:80–5.

    CAS  Google Scholar 

  94. Kohlrausch R. Nachtrag uber die elastiche Nachwirkung beim Cocon und Glasladen. Ann Phys Leipzig. 1847;72:353–405.

    Google Scholar 

  95. Alvarez F, Alegria A, Colmenero J. Relationship between the time-domain Kohlrausch-Williams-Watts and frequency-domain Havriliak-Negami relaxation functions. Phys Rev B. 1991;44:7306–12.

    Google Scholar 

  96. Vyazovkin S, Dranca I. Physical stability and relaxation of amorphous indomethacin. J Phys Chem B. 2007;111:7283–7.

    PubMed  CAS  Google Scholar 

  97. Strachan CJ, Rades T, Gordon KC. A theoretical and spectroscopic study of γ-crystalline and amorphous indomethacin. J Pharm Pharmacol. 2007;59:261–9.

    PubMed  CAS  Google Scholar 

  98. Havriliak S, Negami S. A complex plane analysis of α- dispersions in some polymer systems. J Polym Sci C. 1966;14:99–117.

    Google Scholar 

  99. Vogel H. Das Temperaturabhangigkeitgesetz der Viskosität von Flüssigkeiten. J Phys Z. 1921;22:645–6.

    CAS  Google Scholar 

  100. Fulcher GS. Analysis of recent measurements of the viscosity of glasses. J Am Ceram Soc. 1925;8:339–55.

    CAS  Google Scholar 

  101. Tammann G, Hesse W. Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten. Z Anorg Allg Chem. 1926;156:245–57.

    Google Scholar 

  102. Gordon M, Taylor JS. Ideal copolymers and the second-order transitions of synthetic rubbers. I. Non-crystalline copolymers. J Appl Chem. 1952;2:493–500.

    CAS  Google Scholar 

  103. Simha R, Boyer RF. On a general relation involving the glass temperature and coefficients of expansion of polymers. J Chem Phys. 1962;37:1003–7.

    CAS  Google Scholar 

  104. Couchman PR, Karasz FE. A classical thermodynamic discussion on the effect of composition on glass-transition temperatures. Macromolecules. 1978;11:117–9.

    CAS  Google Scholar 

  105. Angell CA. Relaxation in liquids, polymers and plastic crystals — strong/fragile patterns and problems. J Non-Cryst Solids. 1991;131–133:13–31.

    Google Scholar 

  106. Kirstenmacher TJ, Marsh RE. Crystal and molecular structure of an antiinflammatory agent, indomethacin, 1-(p-chlorobenzoyl)-5-methoxy-2-methylindole-3-acetic acid. J Am Chem Soc. 1972;94:1340–5.

    Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

E.K., M.T., M.D. are thankful for the financial support from the National Center of Science based on decision DEC-2013/09/D/NZ7/04194. The authors are also thankful to Dr. M. Kopras from GlaxoSmithKline Pharmaceuticals S.A. (Poznan, Poland) for providing indomethacin. We would like to thank Dr M. Jarek from NanoBioMedical Centre (Poznan, Poland) for performing DSC measurements.

This research was supported in part by PL-Grid Infrastructure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Kaminska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaminska, E., Adrjanowicz, K., Zakowiecki, D. et al. Enhancement of the Physical Stability of Amorphous Indomethacin by Mixing it with Octaacetylmaltose. Inter and Intra Molecular Studies. Pharm Res 31, 2887–2903 (2014). https://doi.org/10.1007/s11095-014-1385-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1385-4

KEY WORDS

Navigation