Skip to main content

Advertisement

Log in

Liposomal Co-Delivery of Omacetaxine Mepesuccinate and Doxorubicin for Synergistic Potentiation of Antitumor Activity

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Anticancer chemotherapy usually involves the administration of several anticancer drugs that differ in their action mechanisms. Here, we aimed to test whether the combination of omacetaxine mepesuccinate (OMT) and doxorubicin (DOX) could show synergism, and whether the liposomal co-delivery of these two drugs could enhance their antitumor effects in cervical carcinoma model.

Method

OMT-loaded liposomes (OL) were prepared by loading the drug in the lipid bilayers. OL were then electrostatically complexed with DOX, yielding double-loaded liposomes (DOL). DOX-loaded liposomes (DL) were formulated by electrostatic interaction with negatively charged empty liposomes (EL). The combination index (CI) values were calculated to evaluate the synergism of two drugs. In vitro antitumor effects against HeLa cells were measured using CCK-8, calcein staining, and crystal violet staining. In vivo antitumor effects of various liposomes were tested using HeLa cell-bearing mice.

Results

Combination of DOX and OMT had ratio-dependent synergistic activities, with very strong synergism observed at a molar ratio of 4:1 (DOX:OMT). The sizes of EL, DL, OL, and DOL did not significantly differ, but the zeta potentials of DL and DOL were slightly higher than those of OL and EL. In vitro, DOL showed higher antitumor activity than OL, DL or EL in cervical carcinoma HeLa cells. In vivo, unlike other liposomes, DOL reduced the tumor growths by 98.6% and 97.3% relative to the untreated control on day 15 and 25 after the cessation of treatment, respectively.

Conclusions

These results suggest that liposomal co-delivery of DOX and OMT could synergistically potentiate antitumor effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CI:

combination index

DL:

doxorubicin-loaded liposomes

DOL:

doxorubicin and omacetaxine mepesuccinate-loaded liposomes

DOX:

doxorubicin

EL:

empty liposomes

OL:

omacetaxine mepesuccinate-loaded liposomes

OMT:

omacetaxine mepesuccinate

REFERENCES

  1. Kim HG, Lee GW, Kang JH, Kang MH, Hwang IG, Kim SH, et al. Combination chemotherapy with irinotecan and cisplatin in elderly patients (>or= 65 years) with extensive-disease small-cell lung cancer. Lung Cancer. 2008;61:220–6.

    Article  PubMed  Google Scholar 

  2. Wiedmann MW, Mössner J. New and emerging combination therapies for esophageal cancer. Cancer Manag Res. 2013;5:133–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Crown J, Kennedy MJ, Tresca P, Marty M, Espie M, Burris HA, et al. Optimally tolerated dose of lapatinib in combination with docetaxel plus trastuzumab in first-line treatment of HER2-positive metastatic breast cancer. Ann Oncol. 2013;24:2005–11.

    Article  CAS  PubMed  Google Scholar 

  4. Younes A, Oki Y, McLaughlin P, Copeland AR, Goy A, Pro B, et al. Phase 2 study of rituximab plus ABVD in patients with newly diagnosed classical Hodgkin lymphoma. Blood. 2012;119:4123–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Kagami Y, Itoh K, Tobinai K, Fukuda H, Mukai K, Chou T, et al. Phase II study of cyclophosphamide, doxorubicin, vincristine, prednisolone (CHOP) therapy for newly diagnosed patients with low- and low–intermediate risk, aggressive non-Hodgkin’s lymphoma: final results of the Japan Clinical Oncology Group Study, JCOG9508. Int J Hematol. 2012;96:74–83.

    Article  CAS  PubMed  Google Scholar 

  6. Kantarjian HM, O’Brien S, Cortes J. Homoharringtonine/omacetaxine mepesuccinate: the long and winding road to Food and Drug Administration approval. Clin Lymphoma Myeloma Leuk. 2013;13:530–3.

    Article  CAS  PubMed  Google Scholar 

  7. Wetzler M, Segal D. Omacetaxine as an anticancer therapeutic: what is old is new again. Curr Pharm Des. 2011;17:59–64.

    Article  CAS  PubMed  Google Scholar 

  8. Nemunaitis J, Mita A, Stephenson J, Mita M, Sarantopoulos J, Padmanabhan-Iyer S, et al. Pharmacokinetic study of omacetaxine mepesuccinate administered subcutaneously to patients with advanced solid and hematologic tumors. Cancer Chemother Pharmacol. 2013;71:35–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Beranova L, Pombinho A, Spegarova J, Koc M, Klanova M, Molinsky J, et al. The plant alkaloid and anti-leukemia drug homoharringtonine sensitizes resistant human colorectal carcinoma cells to TRAIL-induced apoptosis via multiple mechanisms. Apoptosis. 2013;18:739–50.

    Article  CAS  PubMed  Google Scholar 

  10. Nazha A, Kantarjian H, Cortes J, Quintás-Cardama A. Omacetaxine mepesuccinate (synribo) - newly launched in chronic myeloid leukemia. Expert Opin Pharmacother. 2013;14:1977–86.

    Article  CAS  PubMed  Google Scholar 

  11. Aliabadi HM, Mahdipoor P, Uludag H. Polymeric delivery of siRNA for dual silencing of Mcl-1 and P-glycoprotein and apoptosis induction in drug-resistant breast cancer cells. Cancer Gene Ther. 2013;20:169–77.

    Article  CAS  PubMed  Google Scholar 

  12. Mason KD, Khaw SL, Rayeroux KC, Chew E, Lee EF, Fairlie WD, et al. The BH3 mimetic compound, ABT-737, synergizes with a range of cytotoxic chemotherapy agents in chronic lymphocytic leukemia. Leukemia. 2009;23:2034–41.

    Article  CAS  PubMed  Google Scholar 

  13. Allan EK, Holyoake TL, Craig AR, Jørgensen HG. Omacetaxine may have a role in chronic myeloid leukaemia eradication through downregulation of Mcl-1 and induction of apoptosis in stem/progenitor cells. Leukemia. 2011;25:985–94.

    Article  CAS  PubMed  Google Scholar 

  14. Eldar-Boock A, Polyak D, Scomparin A, Satchi-Fainaro R. Nano-sized polymers and liposomes designed to deliver combination therapy for cancer. Curr Opin Biotechnol. 2013;24:682–9.

    Article  CAS  PubMed  Google Scholar 

  15. Duan X, Xiao J, Yin Q, Zhang Z, Yu H, Mao S, et al. Smart pH-sensitive and temporal-controlled polymeric micelles for effective combination therapy of doxorubicin and disulfiram. ACS Nano. 2013;7:5858–69.

    Article  CAS  PubMed  Google Scholar 

  16. Xu Q, Leong J, Chua QY, Chi YT, Chow PK-H, Pack DW, et al. Combined modality doxorubicin-based chemotherapy and chitosan-mediated p53 gene therapy using double-walled microspheres for treatment of human hepatocellular carcinoma. Biomaterials. 2013;34:5149–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Taratula O, Kuzmov A, Shah M, Garbuzenko OB, Minko T. Nanostructured lipid carriers as multifunctional nanomedicine platform for pulmonary co-delivery of anticancer drugs and siRNA. J Control Release. 2013;171:349–57.

    Article  CAS  PubMed  Google Scholar 

  18. Shim G, Lee S, Kim YB, Kim CW, Oh YK. Enhanced tumor localization and retention of chlorin e6 in cationic nanolipoplexes potentiate the tumor ablation effects of photodynamic therapy. Nanotechnology. 2011;22:365101.

    Article  PubMed  Google Scholar 

  19. Khan M, Ong ZY, Wiradharma N, Attia AB, Yang YY. Advanced materials for co-delivery of drugs and genes in cancer therapy. Adv Healthc Mater. 2012;1:373–92.

    Article  CAS  PubMed  Google Scholar 

  20. Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65:36–48.

    Article  CAS  PubMed  Google Scholar 

  21. Nam K, Nam HY, Kim PH, Kim SW. Paclitaxel-conjugated PEG and arginine-grafted bioreducible poly (disulfide amine) micelles for co-delivery of drug and gene. Biomaterials. 2012;33:8122–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Yun SM, Jung KH, Lee H, Son MK, Seo JH, Yan HH, et al. Synergistic anticancer activity of HS-173, a novel PI3K inhibitor in combination with Sorafenib against pancreatic cancer cells. Cancer Lett. 2013;331:250–61.

    Article  CAS  PubMed  Google Scholar 

  23. Kim MJ, Kim DE, Jeong IG, Choi J, Jang S, Lee JH, et al. HDAC inhibitors synergize antiproliferative effect of sorafenib in renal cell carcinoma cells. Anticancer Res. 2012;32:3161–8.

    CAS  PubMed  Google Scholar 

  24. Chan D, Zheng Y, Tyner JW, Chng WJ, Chien WW, Gery S, et al. Belinostat and panobinostat (HDACI): in vitro and in vivo studies in thyroid cancer. J Cancer Res Clin Oncol. 2013;139:1507–14.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Singh PP, Joshi S, Russell PJ, Verma ND, Wang X, Khatri A. Molecular chemotherapy and chemotherapy: a new front against late-stage hormone-refractory prostate cancer. Clin Cancer Res. 2011;17:4006–18.

    Article  CAS  PubMed  Google Scholar 

  26. Shim G, Choi HW, Lee S, Choi J, Yu YH, Park DE, et al. Enhanced intrapulmonary delivery of anticancer siRNA for lung cancer therapy using cationic ethylphosphocholine-based nanolipoplexes. Mol Ther. 2013;21:816–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C. A novel assay for apoptosis—flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled annexin V. J Immunol Methods. 1995;184:39–51.

    Article  CAS  PubMed  Google Scholar 

  28. Zhou W, Hu J, Tang H, Wang D, Huang X, He C, et al. Small interfering RNA targeting mcl-1 enhances proteasome inhibitor-induced apoptosis in various solid malignant tumors. BMC Cancer. 2011;11:485.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Hermanson DL, Das SG, Li Y, Xing C. Overexpression of Mcl-1 confers multidrug resistance, whereas topoisomerase IIbeta downregulation introduces mitoxantrone-specific drug resistance in acute myeloid leukemia. Mol Pharmacol. 2013;84:236–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Campbell KJ, Bath ML, Turner ML, Vandenberg CJ, Bouillet P, Metcalf D, et al. Elevated Mcl-1 perturbs lymphopoiesis, promotes transformation of hematopoietic stem/progenitor cells, and enhances drug resistance. Blood. 2010;116:3197–207.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Akagi H, Higuchi H, Sumimoto H, Igarashi T, Kabashima A, Mizuguchi H, et al. Suppression of myeloid cell leukemia-1 (Mcl-1) enhances chemotherapy-associated apoptosis in gastric cancer cells. Gastric Cancer. 2013;16:100–10.

    Article  CAS  PubMed  Google Scholar 

  32. Robert F, Carrier M, Rawe S, Chen S, Lowe S, Pelletier J. Altering chemosensitivity by modulating translation elongation. PLoS One. 2009;4:e5428.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Wu GS, Lu JJ, Guo JJ, Huang MQ, Gan L, Chen XP, et al. Synergistic anti-cancer activity of the combination of dihydroartemisinin and doxorubicin in breast cancer cells. Pharmacol Rep. 2013;65:453–9.

    Article  CAS  PubMed  Google Scholar 

  34. Rathos MJ, Khanwalkar H, Joshi K, Manohar SM, Joshi KS. Potentiation of in vitro and in vivo antitumor efficacy of doxorubicin by cyclin-dependent kinase inhibitor P276-00 in human non-small cell lung cancer cells. BMC Cancer. 2013;13:29.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Kim TD, Frick M, le Coutre P. Omacetaxine mepesuccinate for the treatment of leukemia. Expert Opin Pharmacother. 2011;12:2381–92.

    Article  CAS  PubMed  Google Scholar 

  36. Barenholz Y. Doxil® - the first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160:117–34.

    Article  CAS  PubMed  Google Scholar 

  37. Chang RS, Kim J, Lee HY, Han S-E, Na J, Kim K, et al. Reduced dose-limiting toxicity of intraperitoneal mitoxantrone chemotherapy using cardiolipin-based anionic liposomes. Nanomedicine. 2010;6:769–76.

    Article  CAS  PubMed  Google Scholar 

  38. Lee S, Shim G, Kim S, Kim YB, Kim CW, Byun Y, et al. Enhanced transfection rates of small-interfering RNA using dioleylglutamide-based magnetic lipoplexes. Nucleic Acid Ther. 2011;21:165–72.

    Article  CAS  PubMed  Google Scholar 

  39. Chang HI, Yeh MK. Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int J Nanomedicine. 2012;7:49–60.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

Gayong Shim and Sangbin Lee contributed equally to this work. This work was supported by research grants from the Ministry of Science, ICT and Future Planning (No. 2013035166; 2013036131), from the Korean Health Technology R&D project, Ministry of Health and Welfare (No. A092010), and from Business for Cooperative R&D between Industry, Academy, and Research Institute funded Korea Small and Medium Business Administration (No. C0010962).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chan-Wha Kim or Yu-Kyoung Oh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shim, G., Lee, S., Choi, J. et al. Liposomal Co-Delivery of Omacetaxine Mepesuccinate and Doxorubicin for Synergistic Potentiation of Antitumor Activity. Pharm Res 31, 2178–2185 (2014). https://doi.org/10.1007/s11095-014-1317-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1317-3

KEY WORDS

Navigation