Skip to main content

Advertisement

Log in

Biomimetic Delivery Strategies at the Urothelium: Targeted Cytoinvasion in Bladder Cancer Cells via Lectin Bioconjugates

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Urothelial cells, including bladder cancer (BCa) cells, represent a highly valuable but challenging target for localized antineoplastic therapy. This study describes a novel, biomimetic approach to improve intravesical drug delivery, based on glycan-specific targeting. In direct analogy to the invasion mechanism used by uropathogenic bacteria, we evaluate the potential of lectin bioconjugates to facilitate binding and uptake of large payload molecules at this penetration-hostile barrier.

Methods

Wheat germ agglutinin (WGA) served as a targeting ligand and was covalently coupled to fluorescein-labeled bovine serum albumin (fBSA), yielding multivalent protein bioconjugates. Cytoadhesion, uptake and intracellular processing were characterized on a panel of urothelial cell lines of non-malignant and malignant origin.

Results

Conjugation to WGA rendered the fBSA payload protein strongly cytoadhesive, with a clear preference in binding to cancerous cells. The highly specific, lectin-mediated recognition process was followed by rapid internalization, and extensive but non-exclusive accumulation in acid and LAMP-2-positive compartments. Stage of malignancy and mechano-structural cell configuration were important determinants for the sorting between different processing pathways.

Conclusion

Lectin-bioconjugates allow for triggering endogenous uptake routes and influencing the intracellular distribution in BCa cells. They hold considerable promise for enhancing the delivery of small molecule drugs and complex biomolecules in intravesical therapy.

UPEC bacteria invade urothelial cells by FimH-mediated binding to mannosylated membrane components. This process can be mimicked with bioconjugates, consisting of a payload protein and a plant lectin as a carbohydrate-specific targeter. Using model bioconjugates of bovine serum albumin (BSA) and wheat germ agglutinin (WGA), we show that such strategies may be exploited for the design of drug delivery vectors with higher binding and uptake in cancerous bladder cells, and an enhanced control over the sorting to disease-modulated processing pathways

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

aWGA:

Alexa Fluor® 594-labeled wheat germ agglutinin

BCa:

Bladder cancer

bt-fBSA:

Biotinylated fluorescein-labeled bovine serum albumin

DFV:

Discoidal fusiform vesicles

fBSA:

Fluorescein-labeled bovine serum albumin

GEMMA:

Gasphase electrophoretic mobility macromolecular analysis

LAMP:

Lysosome-associated membrane protein

M1/M2 :

Mander’s co-localization coefficients

PCC:

Pearson’s correlation coefficients

RFI:

Relative cell-associated fluorescence intensity

RPE:

R-phycoerythrin

SEM:

Standard error of the mean

UP:

Uroplakin

WGA:

Wheat germ agglutinin

REFERENCES

  1. Kamel MH, Moore PC, Bissada NK, Heshmat SM. Potential years of life lost due to urogenital cancer in the United States: trends from 1972 to 2006 based on data from the SEER database. J Urol. 2012;187:868–71.

    Article  PubMed  Google Scholar 

  2. Sievert KD, Amend B, Nagele U, Schilling D, Bedke J, Horstmann M, et al. Economic aspects of bladder cancer: what are the benefits and costs? World J Urol. 2009;27:295–300.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. van Rhijn BW, Burger M, Lotan Y, Solsona E, Stief CG, Sylvester RJ, et al. Recurrence and progression of disease in non-muscle-invasive bladder cancer: from epidemiology to treatment strategy. Eur Urol. 2009;56:430–42.

    Article  PubMed  Google Scholar 

  4. Shen Z, Shen T, Wientjes MG, O'Donnell MA, Au JL. Intravesical treatments of bladder cancer: review. Pharm Res. 2008;25:1500–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Witjesand JA, Hendricksen K. Intravesical pharmacotherapy for non-muscle-invasive bladder cancer: a critical analysis of currently available drugs, treatment schedules, and long-term results. Eur Urol. 2008;53:45–52.

    Article  Google Scholar 

  6. Khandelwal P, Abraham SN, Apodaca G. Cell biology and physiology of the uroepithelium. Am J Physiol Ren Physiol. 2009;297:F1477–501.

    Article  CAS  Google Scholar 

  7. Wu XR, Kong XP, Pellicer A, Kreibich G, Sun TT. Uroplakins in urothelial biology, function, and disease. Kidney Int. 2009;75:1153–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Kreft ME, Jezernik K, Kreft M, Romih R. Apical plasma membrane traffic in superficial cells of bladder urothelium. Ann N Y Acad Sci. 2009;1152:18–29.

    Article  PubMed  Google Scholar 

  9. Bishop BL, Duncan MJ, Song J, Li G, Zaas D, Abraham SN. Cyclic AMP-regulated exocytosis of Escherichia coli from infected bladder epithelial cells. Nat Med. 2007;13:625–30.

    Article  CAS  PubMed  Google Scholar 

  10. Lu Z, Yeh TK, Tsai M, Au JL, Wientjes MG. Paclitaxel-loaded gelatin nanoparticles for intravesical bladder cancer therapy. Clin Cancer Res Off J Am Assoc Cancer Res. 2004;10:7677–84.

    Article  CAS  Google Scholar 

  11. Chen JP, Leu YL, Fang CL, Chen CH, Fang JY. Thermosensitive hydrogels composed of hyaluronic acid and gelatin as carriers for the intravesical administration of cisplatin. J Pharm Sci. 2011;100:655–66.

    Article  CAS  PubMed  Google Scholar 

  12. Barthelmes J, Perera G, Hombach J, Dunnhaupt S, Bernkop-Schnurch A. Development of a mucoadhesive nanoparticulate drug delivery system for a targeted drug release in the bladder. Int J Pharm. 2011;416:339–45.

    Article  CAS  PubMed  Google Scholar 

  13. Bilensoy E, Sarisozen C, Esendagli G, Dogan AL, Aktas Y, Sen M, et al. Intravesical cationic nanoparticles of chitosan and polycaprolactone for the delivery of Mitomycin C to bladder tumors. Int J Pharm. 2009;371:170–6.

    Article  CAS  PubMed  Google Scholar 

  14. Denkbas EB, Ozdemyr N, Ozturk E, Eroglu M, Acar A. Mitomycin-C-loaded alginate carriers for bladder cancer chemotherapy. J Bioact Compat Polym. 2004;19:33–44.

    Article  CAS  Google Scholar 

  15. Chang LC, Wu SC, Tsai JW, Yu TJ, Tsai TR. Optimization of epirubicin nanoparticles using experimental design for enhanced intravesical drug delivery. Int J Pharm. 2009;376:195–203.

    Article  CAS  PubMed  Google Scholar 

  16. Le Visage C, Rioux-Leclercq N, Haller M, Breton P, Malavaud B, Leong K. Efficacy of paclitaxel released from bio-adhesive polymer microspheres on model superficial bladder cancer. J Urol. 2004;171:1324–9.

    Article  PubMed  Google Scholar 

  17. Mugabe C, Matsui Y, So AI, Gleave ME, Baker JH, Minchinton AI, et al. In vivo evaluation of mucoadhesive nanoparticulate docetaxel for intravesical treatment of non-muscle-invasive bladder cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2011;17:2788–98.

    Article  CAS  Google Scholar 

  18. Tyagi P, Li Z, Chancellor M, De Groat WC, Yoshimura N, Huang L. Sustained intravesical drug delivery using thermosensitive hydrogel. Pharm Res. 2004;21:832–7.

    Article  CAS  PubMed  Google Scholar 

  19. Eto DS, Jones TA, Sundsbak JL, Mulvey MA. Integrin-mediated host cell invasion by type 1-piliated uropathogenic Escherichia coli. PLoS Pathog. 2007;3:e100.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Dhakal BK, Kulesus RR, Mulvey MA. Mechanisms and consequences of bladder cell invasion by uropathogenic Escherichia coli. Eur J Clin Investig. 2008;38 Suppl 2:2–11.

    Article  CAS  Google Scholar 

  21. Truschel ST, Wang E, Ruiz WG, Leung SM, Rojas R, Lavelle J, et al. Stretch-regulated exocytosis/endocytosis in bladder umbrella cells. Mol Biol Cell. 2002;13:830–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Yi SMP, Harson RE, Zabner J, Welsh MJ. Lectin binding and endocytosis at the apical surface of human airway epithelia. Gene Ther. 2001;8:1826–32.

    Article  CAS  PubMed  Google Scholar 

  23. Lehr CM. Lectin-mediated drug delivery: the second generation of bioadhesives. J Control Release Off J Control Release Soc. 2000;65:19–29.

    Article  CAS  Google Scholar 

  24. Haltner E, Easson JH, Lehr C-M. Lectins and bacterial invasion factors for controlling endo- and transcytosis of bioadhesive drug carrier systems. Eur J Pharm Biopharm Off J Arbeitsgemeinschaft Pharm Verfahrenstechnik eV. 1997;44:3–13.

    CAS  Google Scholar 

  25. Gabor F, Schwarzbauer A, Wirth M. Lectin-mediated drug delivery: binding and uptake of BSA-WGA conjugates using the Caco-2 model. Int J Pharm. 2002;237:227–39.

    Article  CAS  PubMed  Google Scholar 

  26. Coon BG, Crist S, Gonzalez-Bonet AM, Kim HK, Sowa J, Thompson DH, et al. Fibronectin attachment protein from bacillus Calmette-Guerin as targeting agent for bladder tumor cells. Int J Cancer. 2012;131:591–600.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Ohyama C. Glycosylation in bladder cancer. Int J Clin Oncol/Jpn Soc Clin Oncol. 2008;13:308–13.

    Article  CAS  Google Scholar 

  28. Neal DE, Charlton RG, Bennett MK. Histochemical study of lectin binding in neoplastic and non-neoplastic urothelium. Br J Urol. 1987;60:399–404.

    Article  CAS  PubMed  Google Scholar 

  29. Neutsch L, Plattner VE, Polster-Wildhofen S, Zidar A, Chott A, Borchard G, et al. Lectin mediated biorecognition as a novel strategy for targeted delivery to bladder cancer. J Urol. 2011;186:1481–8.

    Article  CAS  PubMed  Google Scholar 

  30. Neutsch L, Eggenreich B, Herwig E, Marchetti-Deschmann M, Allmaier G, Gabor F, et al. Lectin bioconjugates trigger urothelial cytoinvasion - A glycotargeted approach for improved intravesical drug delivery. Eur J Pharm Biopharm Off J Arbeitsgemeinschaft Pharm Verfahrenstechnik eV. 2012;82:367–75.

    CAS  Google Scholar 

  31. Bacher G, Szymanski WW, Kaufman SL, Zollner P, Blaas D, Allmaier G. Charge-reduced nano electrospray ionization combined with differential mobility analysis of peptides, proteins, glycoproteins, noncovalent protein complexes and viruses. J Mass Spectrom JMS. 2001;36:1038–52.

    Article  CAS  Google Scholar 

  32. Barlow AL, Macleod A, Noppen S, Sanderson J, Guerin CJ. Colocalization analysis in fluorescence micrographs: verification of a more accurate calculation of pearson's correlation coefficient. Microsc Microanal Off J Microsc Soc Am Microbeam Anal Soc Microsc Soc Can. 2010;16:710–24.

    CAS  Google Scholar 

  33. Porcel EM, Foose LL, Svitova TF, Blanch HW, Prausnitz JM, Radke CJ. Role of surfactant on the proteolysis of aqueous bovine serum albumin. Biotechnol Bioeng. 2009;102:1330–41.

    Article  CAS  PubMed  Google Scholar 

  34. Khandelwal P, Ruiz WG, Apodaca G. Compensatory endocytosis in bladder umbrella cells occurs through an integrin-regulated and RhoA- and dynamin-dependent pathway. EMBO J. 2010;29:1961–75.

    Article  CAS  PubMed  Google Scholar 

  35. Eto DS, Gordon HB, Dhakal BK, Jones TA, Mulvey MA. Clathrin, AP-2, and the NPXY-binding subset of alternate endocytic adaptors facilitate FimH-mediated bacterial invasion of host cells. Cell Microbiol. 2008;10:2553–67.

    Article  CAS  PubMed  Google Scholar 

  36. Guo X, Tu L, Gumper I, Plesken H, Novak EK, Chintala S, et al. Involvement of vps33a in the fusion of uroplakin-degrading multivesicular bodies with lysosomes. Traffic. 2009;10:1350–61.

    Article  CAS  PubMed  Google Scholar 

  37. Born M, Pahner I, Ahnert-Hilger G, Jons T. The maintenance of the permeability barrier of bladder facet cells requires a continuous fusion of discoid vesicles with the apical plasma membrane. Eur J Cell Biol. 2003;82:343–50.

    Article  CAS  PubMed  Google Scholar 

  38. Fong A, Garcia E, Gwynn L, Lisanti MP, Fazzari MJ, Li M. Expression of caveolin-1 and caveolin-2 in urothelial carcinoma of the urinary bladder correlates with tumor grade and squamous differentiation. Am J Clin Pathol. 2003;120:93–100.

    Article  CAS  PubMed  Google Scholar 

  39. Taganna J, de Boer AR, Wuhrer M, Bouckaert J. Glycosylation changes as important factors for the susceptibility to urinary tract infection. Biochem Soc Trans. 2011;39:349–54.

    Article  CAS  PubMed  Google Scholar 

  40. Kreft ME, Romih R, Kreft M, Jezernik K. Endocytotic activity of bladder superficial urothelial cells is inversely related to their differentiation stage. Differ Res Biol Divers. 2009;77:48–59.

    Article  CAS  Google Scholar 

Download references

ASSOCIATED CONTENT

Supplemental data and experimental methods on the physicochemical and initial biological characterization of the conjugate fractions from SEC with a calculation of the normalized cytoadhesive capacity (Table SI) are available in the Supplementary Material. Figure S1 shows a more detailed time-lapse study of bioconjugate uptake in 5637 single cells. Co-localization of fBSA/WGA with the free targeting ligand (aWGA) in SV-HUC-1 monolayers prior and after internalization can be taken from Figure S2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Wirth.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

Supplemental data and experimental methods on the physicochemical and initial biological characterization of the conjugate fractions from SEC with a calculation of the normalized cytoadhesive capacity (Table SI1) are available in the supporting information. Figure SI1 shows a more detailed time-lapse study of bioconjugate uptake in 5637 single cells. Co-localization of fBSA/WGA with the free targeting ligand (aWGA) in SV-HUC-1 monolayers prior and after internalization can be taken from Figure SI2. (DOCX 55074 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neutsch, L., Eggenreich, B., Herwig, E. et al. Biomimetic Delivery Strategies at the Urothelium: Targeted Cytoinvasion in Bladder Cancer Cells via Lectin Bioconjugates. Pharm Res 31, 819–832 (2014). https://doi.org/10.1007/s11095-013-1204-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1204-3

KEY WORDS

Navigation