Skip to main content

Advertisement

Log in

IL-1Ra and its Delivery Strategies: Inserting the Association in Perspective

  • Perspective
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Interleukin-1 receptor antagonist (IL-1Ra) is a naturally occurring anti-inflammatory antagonist of interleukin-1 family of pro-inflammatory cytokines. The broad spectrum anti-inflammatory effects of IL-1Ra have been investigated against various auto-immune diseases such as diabetes mellitus, rheumatoid arthritis. Despite of its outstanding broad spectrum anti-inflammatory effects, IL-1Ra has short biological half-life (4–6 h) and to cope with this problem, up till now, many delivery strategies have been applied either to extend the half-life and/or prolong the steady-state sustained release of IL-1Ra from its target site. Here in our present paper, we have provided an overview of all approaches attempted to prolong the duration of therapeutic effects of IL-1Ra either by fusing IL-1Ra using fusion protein technology to extend the half-life and/or development of new dosage forms using various biodegradable polymers to prolong its steady-state sustained release at the site of administration. These approaches have been characterized by their intended impact on either in vitro release characteristics and/or pharmacokinetic and pharmacodynamic parameters of IL-1Ra. We have also compared these delivery strategies with each other on the basis of bioactivity of IL-1Ra after fusion with fusion protein partner and/or encapsulation with biodegradable polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AlbudAbs:

Albumin binding human binding domain antibodies

ELP:

Elastin-like peptide

HSA:

Human serum albumin

IL-1Ra:

Interleukin-1 Receptor antagonist

PF127:

Pluronic F127

PLGA:

Poly-lactic-co-glycolic acid

RFVP:

Amino acid residues of Streptococcus gordonii

References

  1. Freeman BD, Buchman TG. Interleukin-1 receptor antagonist as therapy for inflammatory disorders. Expert Opin Biol Ther. 2001;1:301–8.

    PubMed  CAS  Google Scholar 

  2. Barksby HE, Lea SR, Preshaw PM, Taylor JJ. The expanding family of interleukin-1 cytokines and their role in destructive inflammatory disorders. Clin Exp Immunol. 2007;149:217–25.

    PubMed  CAS  Google Scholar 

  3. Kavanaugh A. Anakinra (interleukin-1 receptor antagonist) has positive effects on function and quality of life in patients with rheumatoid arthritis. Adv Ther. 2006;23:208–17.

    PubMed  CAS  Google Scholar 

  4. Akash MSH, Shen Q, Rehman K, Chen S. Interleukin-1 receptor antagonist: a new therapy for type 2 diabetes mellitus. J Pharm Sci. 2012;101:1647–58.

    PubMed  CAS  Google Scholar 

  5. Akash MSH, Rehman K, Chen S. Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus. J Cell Biochem. 2013;114:525–31.

    PubMed  CAS  Google Scholar 

  6. Akash MSH, Rehman K, Chen S. An overview of valuable scientific models for diabetes mellitus. Curr Diabetes Rev. 2013;9:286–93.

    Google Scholar 

  7. Lee BC, Ahn SY, Doo HK, Yim SV, Lee HJ, Jin SY, et al. Susceptibility for ischemic stroke in Korean population is associated with polymorphisms of the interleukin-1 receptor antagonist and tumor necrosis factor-alpha genes, but not the interleukin-1beta gene. Neurosci Lett. 2004;357:33–6.

    PubMed  CAS  Google Scholar 

  8. Pinteaux E, Rothwell NJ, Boutin H. Neuroprotective actions of endogenous interleukin-1 receptor antagonist (IL-1ra) are mediated by glia. Glia. 2006;53:551–6.

    PubMed  Google Scholar 

  9. Holmes C, El-Okl M, Williams AL, Cunningham C, Wilcockson D, Perry VH. Systemic infection, interleukin 1beta, and cognitive decline in Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2003;74:788–9.

    PubMed  CAS  Google Scholar 

  10. Shaftel SS, Kyrkanides S, Olschowka JA, Miller JN, Johnson RE, O’Banion MK. Sustained Hippocampal IL-1beta overexpression mediates chronic neuroinflammation and ameliorates Alzheimer plaque pathology. J Clin Invest. 2007;117:1595–604.

    PubMed  CAS  Google Scholar 

  11. Ferrari CC, Pott Godoy MC, Tarelli R, Chertoff M, Depino AM, Pitossi FJ. Progressive neurodegeneration and motor disabilities induced by chronic expression of IL-1beta in the substantia nigra. Neurobiol Dis. 2006;24:183–93.

    PubMed  CAS  Google Scholar 

  12. Godoy MC, Tarelli R, Ferrari CC, Sarchi MI, Pitossi FJ. Central and systemic IL-1 exacerbates neurodegeneration and motor symptoms in a model of Parkinson’s disease. Brain. 2008;131:1880–94.

    Google Scholar 

  13. Bartfai T, Sanchez-Alavez M, Andell-Jonsson S, Schultzberg M, Vezzani A, Danielsson E, et al. Interleukin-1 system in CNS stress: seizures, fever, and neurotrauma. Ann N Y Acad Sci. 2007;1113:173–7.

    PubMed  CAS  Google Scholar 

  14. Simi A, Tsakiri N, Wang P, Rothwell NJ. Interleukin-1 and inflammatory neurodegeneration. Biochem Soc Trans. 2007;35:1122–6.

    PubMed  CAS  Google Scholar 

  15. Tansey MG, McCoy MK, Frank-Cannon TC. Neuroinflammatory mechanisms in Parkinson’s disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp Neurol. 2007;208:1–25.

    PubMed  CAS  Google Scholar 

  16. McColl BW, Allan SM, Rothwell NJ. Systemic infection, inflammation and acute ischemic stroke. Neuroscience. 2009;158:1049–61.

    PubMed  CAS  Google Scholar 

  17. Vezzani A, Balosso S, Maroso M, Zardoni D, Noe F, Ravizza T. ICE/caspase 1 inhibitors and IL-1beta receptor antagonists as potential therapeutics in epilepsy. Curr Opin Investig Drugs. 2010;11:43–50.

    PubMed  CAS  Google Scholar 

  18. Allan SM, Tyrrell PJ, Rothwell NJ. Interleukin-1 and neuronal injury. Nat Rev Immunol. 2005;5:629–40.

    PubMed  CAS  Google Scholar 

  19. Lucas SM, Rothwell NJ, Gibson RM. The role of inflammation in CNS injury and disease. Br J Pharmacol. 2006;147:S232–40.

    PubMed  CAS  Google Scholar 

  20. Neven B, Marvillet I, Terrada C, Ferster A, Boddaert N, Couloignier V, et al. Long-term efficacy of the interleukin-1 receptor antagonist anakinra in ten patients with neonatal-onset multisystem inflammatory disease/chronic infantile neurologic, cutaneous, articular syndrome. Arthritis Rheum. 2010;62:258–67.

    PubMed  CAS  Google Scholar 

  21. Kontermann RE. Strategies for extended serum half-life of protein therapeutics. Curr Opin Biotechnol. 2011;22:868–76.

    PubMed  CAS  Google Scholar 

  22. Cawthorne C, Prenant C, Smigova A, Julyan P, Maroy R, Herholz K, et al. Biodistribution, pharmacokinetics and metabolism of interleukin-1 receptor antagonist (IL-1RA) using [(1)(8)F]-IL1RA and PET imaging in rats. Br J Pharmacol. 2011;162:659–72.

    PubMed  CAS  Google Scholar 

  23. Parveen A, Akash MSH, Rehman K, Tariq M, Zahara N, Iqbal T. Biodisposition kinetics of isoniazid in healthy females. J App Pharm. 2012;4:676–81.

    CAS  Google Scholar 

  24. Rehman K, Akash MSH, Azhar S, Khan SA, Abid R, Waseem A, et al. A biochemical and histopathologic study showing protection and treatment of gentamicin-induced nephrotoxicity in rabbits using vitamin C. Afr J Tradit Complement Altern Med. 2012;9:360–5.

    PubMed  CAS  Google Scholar 

  25. Bellingham CM, Lillie MA, Gosline JM, Wright GM, Starcher BC, Bailey AJ, et al. Recombinant human elastin polypeptides self-assemble into biomaterials with elastin-like properties. Biopolymers. 2003;70:445–55.

    PubMed  CAS  Google Scholar 

  26. Wise SG, Mithieux SM, Raftery MJ, Weiss AS. Specificity in the coacervation of tropoelastin: solvent exposed lysines. J Struct Biol. 2005;149:273–81.

    PubMed  CAS  Google Scholar 

  27. Chow D, Nunalee ML, Lim DW, Simnick AJ, Chilkoti A. Peptide-based biopolymers in biomedicine and biotechnology. Mater Sci Eng R Rep. 2008;62:125–55.

    PubMed  Google Scholar 

  28. Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer. 2006;6:688–701.

    PubMed  CAS  Google Scholar 

  29. McDaniel JR, Callahan DJ, Chilkoti A. Drug delivery to solid tumors by elastin-like polypeptides. Adv Drug Deliv Rev. 2010;62:1456–67.

    PubMed  CAS  Google Scholar 

  30. Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev. 2001;47:113–31.

    PubMed  CAS  Google Scholar 

  31. Chuang VTG, Kragh-Hansen U, Otagiri M. Pharmaceutical strategies utilizing recombinant human serum albumin. Pharm Res. 2002;19:569–77.

    PubMed  Google Scholar 

  32. Martino M, Tamburro AM. Chemical synthesis of cross-linked poly(KGGVG), an elastin-like biopolymer. Biopolymers. 2001;59:29–37.

    PubMed  CAS  Google Scholar 

  33. Martino M, Coviello A, Tamburro AM. Synthesis and structural characterization of poly(LGGVG), an elastin-like polypeptide. Int J Biol Macromol. 2000;27:59–64.

    PubMed  CAS  Google Scholar 

  34. Spezzacatena C, Perri T, Guantieri V, Sandberg LB, Mitts TF, Tamburro AM. Classical synthesis of and structural studies on a biologically active heptapeptide and a nonapeptide of bovine elastin. Eur J Org Chem. 2002;2002:95–103.

    Google Scholar 

  35. Betre H, Liu W, Zalutsky MR, Chilkoti A, Kraus VB, Setton LA. A thermally responsive biopolymer for intra-articular drug delivery. J Control Release. 2006;115:175–82.

    PubMed  CAS  Google Scholar 

  36. Meyer DE, Chilkoti A. Purification of recombinant proteins by fusion with thermally-responsive polypeptides. Nat Biotechnol. 1999;17:1112–5.

    PubMed  CAS  Google Scholar 

  37. Shamji MF, Betre H, Kraus VB, Chen J, Chilkoti A, Pichika R, et al. Development and characterization of a fusion protein between thermally responsive elastin-like polypeptide and interleukin-1 receptor antagonist: sustained release of a local anti-inflammatory therapeutic. Arthritis Rheum. 2007;56:3650–61.

    PubMed  CAS  Google Scholar 

  38. Kim DH, Smith JT, Chilkoti A, Reichert WM. The effect of covalently immobilized rhIL-1ra-ELP fusion protein on the inflammatory profile of LPS-stimulated human monocytes. Biomaterials. 2007;28:3369–77.

    PubMed  CAS  Google Scholar 

  39. Christensen T, Amiram M, Dagher S, Trabbic-Carlson K, Shamji MF, Setton LA, et al. Fusion order controls expression level and activity of elastin-like polypeptide fusion proteins. Protein Sci. 2009;18:1377–87.

    PubMed  CAS  Google Scholar 

  40. Huang YS, Chen Z, Yang ZY, Wang TY, Zhou L, Wu JB, et al. Preparation and characterization of a potent, long-lasting recombinant human serum albumin-interferon-alpha2b fusion protein expressed in Pichia pastoris. Eur J Pharm Biopharm. 2007;67:301–8.

    PubMed  CAS  Google Scholar 

  41. Subramanian GM, Fiscella M, Lamouse-Smith A, Zeuzem S, McHutchison JG. Albinterferon alpha-2b: a genetic fusion protein for the treatment of chronic hepatitis C. Nat Biotechnol. 2007;25:1411–9.

    PubMed  CAS  Google Scholar 

  42. Kratz F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Contr Release. 2008;132:171–83.

    CAS  Google Scholar 

  43. Dou WF, Lei JY, Zhang LF, Xu ZH, Chen Y, Jin J. Expression, purification, and characterization of recombinant human serum albumin fusion protein with two human glucagon-like peptide-1 mutants in Pichia pastoris. Protein Expr Purif. 2008;61:45–9.

    PubMed  CAS  Google Scholar 

  44. Chen JH, Zhang XG, Jiang YT, Yan LY, Tang L, Yin YW, et al. Bioactivity and pharmacokinetics of two human serum albumin-thymosin alpha1-fusion proteins, rHSA-Talpha1 and rHSA-L-Talpha1, expressed in recombinant Pichia pastoris. Canc Immunol Immunother. 2010;59:1335–45.

    CAS  Google Scholar 

  45. Muller D, Karle A, Meißburger B, Hofig I, Stork R, Kontermann RE. Improved pharmacokinetics of recombinant bispecific antibody molecules by fusion to human serum albumin. J Biol Chem. 2007;282:12650–60.

    PubMed  Google Scholar 

  46. Yazaki PJ, Kassa T, Cheung CW, Crow DM, Sherman MA, Bading JR, et al. Biodistribution and tumor imaging of an anti-CEA single-chain antibody-albumin fusion protein. Nucl Med Biol. 2008;35:151–8.

    PubMed  CAS  Google Scholar 

  47. Evans L, Hughes M, Waters J, Cameron J, Dodsworth N, Tooth D, et al. The production, characterisation and enhanced pharmacokinetics of scFv-albumin fusions expressed in Saccharomyces cerevisiae. Protein Expr Purif. 2010;73:113–24.

    PubMed  CAS  Google Scholar 

  48. Osborn BL, Olsen HS, Nardelli B, Murray JH, Zhou JX, Garcia A, et al. Pharmacokinetic and pharmacodynamic studies of a human serum albumin-interferon-alpha fusion protein in cynomolgus monkeys. J Pharmacol Exp Ther. 2002;303:540–8.

    PubMed  CAS  Google Scholar 

  49. Dai SF, Shen Q, Chen S. Inhomogeneous expression of fusion protein HSA/IL-1RaPichia pastoris. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2008;37:134–8.

    PubMed  CAS  Google Scholar 

  50. Shen Q, Chen S. Purification of fusion protein HSA/IL-1Ra and its bioactivity. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2009;38:260–4.

    PubMed  CAS  Google Scholar 

  51. Kobayashi K, Kuwae S, Ohya T, Ohda T, Ohyama M, Ohi H, et al. High-level expression of recombinant human serum albumin from the methylotrophic yeast Pichia pastoris with minimal protease production and activation. J Biosci Bioeng. 2000;89:55–61.

    PubMed  CAS  Google Scholar 

  52. Kang HA, Kang W, Hong WK, Kim MW, Kim JY, Sohn JH, et al. Development of expression systems for the production of recombinant human serum albumin using the MOX promoter in hansenula polymorphaDL-1. Biotechnol Bioeng. 2001;76:175–85.

    PubMed  CAS  Google Scholar 

  53. Marx H, Mecklenbrauker A, Gasser B, Sauer M, Mattanovich D. Directed gene copy number amplification in Pichia pastoris by vector integration into the ribosomal DNA locus. FEMS Yeast Res. 2009;9:1260–70.

    PubMed  CAS  Google Scholar 

  54. Sung C, Nardelli B, LaFleur DW, Blatter E, Corcoran M, Olsen HS, et al. An IFN-beta-albumin fusion protein that displays improved pharmacokinetic and pharmacodynamic properties in nonhuman primates. J Interferon Cytokine Res. 2003;23:25–36.

    PubMed  CAS  Google Scholar 

  55. Wang W, Ou Y, Shi Y. AlbuBNP, a recombinant B-type natriuretic peptide and human serum albumin fusion hormone, as a long-term therapy of congestive heart failure. Pharm Res. 2004;21:2105–11.

    PubMed  CAS  Google Scholar 

  56. Duttaroy A, Kanakaraj P, Osborn BL, Schneider H, Pickeral OK, Chen C, et al. Development of a long-acting insulin analog using albumin fusion technology. Diabetes. 2005;54:251–8.

    PubMed  CAS  Google Scholar 

  57. Shen Q, Wu M, Wang H, Naranmandura H, Chen S. The effect of gene copy number and co-expression of chaperone on production of albumin fusion proteins in Pichia pastoris. Appl Microbiol Biotechnol. 2012;96:763–72.

    PubMed  CAS  Google Scholar 

  58. Jespers L, Schon O, Famm K, Winter G. Aggregation-resistant domain antibodies selected on phage by heat denaturation. Nat Biotechnol. 2004;22:1161–5.

    PubMed  CAS  Google Scholar 

  59. Ward ES, Gussow D, Griffiths AD, Jones PT, Winter G. Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli. Nature. 1989;341:544–6.

    PubMed  CAS  Google Scholar 

  60. Holt LJ, Basran A, Jones K, Chorlton J, Jespers LS, Brewis ND, et al. Anti-serum albumin domain antibodies for extending the half-lives of short lived drugs. Protein Eng Des Sel. 2008;21:283–8.

    PubMed  CAS  Google Scholar 

  61. Mohler KM, Torrance DS, Smith CA, Goodwin RG, Stremler KE, Fung VP, et al. Soluble tumor necrosis factor (TNF) receptors are effective therapeutic agents in lethal endotoxemia and function simultaneously as both TNF carriers and TNF antagonists. J Immunol. 1993;151:1548–61.

    PubMed  CAS  Google Scholar 

  62. Chaudhury C, Mehnaz S, Robinson JM, Hayton WL, Pearl DK, Roopenian DC, et al. The major histocompatibility complex-related Fc receptor for IgG (FcRn) binds albumin and prolongs its lifespan. J Exp Med. 2003;197:315–22.

    PubMed  CAS  Google Scholar 

  63. Beninati C, Oggioni MR, Boccanera M, Spinosa MR, Maggi T, Conti S, et al. Therapy of mucosal candidiasis byexpression of an anti-idiotype in human commensal bacteria. Nat Biotechnol. 2000;18:1060–4.

    PubMed  CAS  Google Scholar 

  64. Kruger C, Hu Y, Pan Q, Marcotte H, Hultberg A, Delwar D, et al. In situ delivery of passiveimmunity by lactobacilli producing single-chain antibodies. Nat Biotechnol. 2002;20:702–6.

    PubMed  Google Scholar 

  65. Steidler L, Robinson K, Chamberlain LM, Schofield KM, Remaut E, Le Page RWF, et al. Mucosal delivery of murine interleukin-2 (IL-2) and IL-6 by recombinant strains of Lactococcus lactis coexpressing antigen and cytokine. Infect Immun. 1998;66:3183–9.

    PubMed  CAS  Google Scholar 

  66. Bermudez-Humaran LG, Langella P, Cortes-Perez NG, Gruss A, Tamez-Guerra RS, Oliveira SC, et al. Intranasal immunization with recom-binant Lactococcus lactis secreting murine interleukin-12 enhances antigen-specific Th1 cytokine production. Infect Immun. 2003;71:1887–96.

    PubMed  CAS  Google Scholar 

  67. Medaglini D, Oggioni MR, Pozzi G. Vaginal immunization with recombinant gram positive bacteria. Am J Reprod Immunol. 1998;39:199–208.

    PubMed  CAS  Google Scholar 

  68. Steidler L, Hans W, Schotte L, Neirynck S, Obermeier F, Falk W, et al. Treatment of murine colitis by Lactococcus lac-tis secreting interleukin-10. Science. 2000;289:1352–5.

    PubMed  CAS  Google Scholar 

  69. Steidler L, Neirynck S, Huyghebaert N, Snoeck V, Vermeire A, God-deeris B, et al. Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat Biotechnol. 2003;21:785–9.

    PubMed  CAS  Google Scholar 

  70. Ricci S, Macchia G, Ruggiero P, Maggi T, Bossù P, Xu L, et al. In vivo mucosal delivery of bioactive human interleukin 1 receptor antagonist produced by Streptococcus gordonii. BMC Biotechnol. 2003;3:15.

    PubMed  Google Scholar 

  71. Porzio S, Bossù P, Ruggiero P, Boraschi D, Tagliabue A. Mucosal delivery of anti-inflammatory IL-1Ra by sporulating recombinant bacteria. BMC Biotechnol. 2004;4:27.

    PubMed  Google Scholar 

  72. Shah SNH, Asghar S, Choudhry MA, Akash MSH, Rehman NU, Baksh S. Formulation and evaluation of natural gum-based sustained release matrix tablets of flurbiprofen using response surface methodology. Drug Develop Ind Pharm. 2009;35:1470–8.

    CAS  Google Scholar 

  73. Akash MSH, Iqbal F, Raza M, Rehman K, Ahmed S, Shahzad Y, et al. Characterization of ethylcellulose and hydroxypropyl methylcelluse microspheres for controlled release of flurbiprofen. J Pharm Drug Deliv Res. 2013. doi:10.4172/2325-9604.1000113.

    Google Scholar 

  74. Shah SNH, Shahzad Y, Akash MSH, Ali M, Salman M, Bukhari SNI, et al. Rabbit skin and polydimethylsiloxane as model membranes to evaluate permeation kinetics from topical formulation. Pak J Zoo. 2013;45:159–66.

    CAS  Google Scholar 

  75. Stratton LP, Dong A, Manning M, Carpenter JF. Drug delivery matrix containing native protein precipitates suspended in a poloxamer gel. J Pharm Sci. 1997;86:1006–10.

    PubMed  CAS  Google Scholar 

  76. Liu Y, Lu WL, Wang JC, Zhang X, Zhang H, Wang XQ, et al. Controlled delivery of recombinant hirudin based on thermo-sensitive pluronic® F127 hydrogel for subcutaneous administra-tion: in vitro and in vivo characterization. J Control Release. 2007;117:387–95.

    PubMed  CAS  Google Scholar 

  77. Das N, Madan P, Lin S. Statistical optimization of insulin-loaded pluronic F-127 gels for buccal delivery of basal insulin. Pharm Dev Technol. 2012;17:363–74.

    PubMed  CAS  Google Scholar 

  78. Bias P, Labrenz R, Rose P. Sustained-release dexamethasone palmitate: pharmacokinetics and efficacy in patients with activated inflammatory osteoarthritis of the knee. Clin Drug Investig. 2001;21:429–36.

    CAS  Google Scholar 

  79. Horisawa E, Hirota T, Kawazoe S, Yamada J, Yamamoto H, Takeuchi H, et al. Prolonged anti-inflammatory action of DL-lactide/glycolide copolymer nanospheres containing betamethasone sodium phosphate for an intra-articular delivery system in antigen-induced arthritic rabbit. Pharm Res. 2002;19:403–10.

    PubMed  CAS  Google Scholar 

  80. Larsen C, Ostergaard J, Larsen SW, Jensen H, Jacobsen S, Lindegaard C, et al. Intra-articular depot formulation principles: role in the management of postoperative pain and arthritic disorders. J Pharm Sci. 2008;97:4622–54.

    PubMed  CAS  Google Scholar 

  81. Patel ZS, Yamamoto M, Ueda H, Tabata Y, Mikos AG. Biodegradable gelatin microparticles as delivery systems for the controlled release of bone morphogenetic protein-2. Acta Biomater. 2008;4:1126–38.

    PubMed  CAS  Google Scholar 

  82. Lee GS, Park JH, Shin US, Kim HW. Direct deposited porous scaffolds of calcium phosphate cement with alginate for drug delivery and bone tissue engineering. Acta Biomater. 2011;7:3178–86.

    PubMed  CAS  Google Scholar 

  83. King WJ, Toepke MW, Murphy WL. Facile formation of dynamic hydrogel microspheres for triggered growth factor delivery. Acta Biomater. 2011;7:975–85.

    PubMed  CAS  Google Scholar 

  84. Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM. Nano/micro technologies for delivering macromolecular therapeutics using poly(D, L-lactide-co-glycolide) and its derivatives. J Control Release. 2008;125:193–209.

    PubMed  CAS  Google Scholar 

  85. Johnson OL, Cleland JL, Lee HJ, Charnis M, Duenas E, Jaworowicz W, et al. A month-long effect from a single injection of microencapsulated human growth hormone. Nat Med. 1996;2:795–9.

    PubMed  CAS  Google Scholar 

  86. Yuksel E, Weinfeld AB, Cleek R, Waugh JM, Jensen J, Boutros S, et al. De novo adipose tissue generation through long-term, local delivery of insulin and insulin-like growth factor-1 by PLGA/PEG microspheres in an in vivo rat model: a novel concept and capability. Plast Reconstr Surg. 2000;105:1721–9.

    PubMed  CAS  Google Scholar 

  87. Han K, Lee KD, Gao ZG, Park JS. Preparation and evaluation of poly(−lactic acid) microspheres containing rhEGF for chronic gastric ulcer healing. J Control Release. 2001;75:259–69.

    PubMed  CAS  Google Scholar 

  88. Pisal DS, Kosloski MP, Balu-Iyer SV. Delivery of therapeutic proteins. J Pharm Sci. 2010;99:2557–75.

    PubMed  CAS  Google Scholar 

  89. Cai Q, Shi G, Bei J, Wang S. Enzymatic degradation behavior and mechanism of Poly(lactide-co-glycolide) foams by trypsin. Biomaterials. 2003;24:629–38.

    PubMed  Google Scholar 

  90. Lavi G, Dinarello CA, Apte RN, Cohen S. Sustained release of IL-1Ra from biodegradable microspheres prolongs its IL-1-neutralizing effects. Israel J Chem. 2005;45:457–64.

    CAS  Google Scholar 

  91. Lavi G, Voronov E, Dinarello CA, Apte RN, Cohen S. Sustained delivery of IL-1Ra from biodegradable microspheres reduces the number of murine B16 melanoma lung metastases. J Control Release. 2007;123:123–30.

    PubMed  CAS  Google Scholar 

  92. Gorth DJ, Mauck RL, Chiaro JA, Mohanraj B, Hebela NM, Dodge GR, et al. IL-1ra delivered from poly(lactic-co-glycolic acid) microspheres attenuates IL-1β-mediated degradation of nucleus pulposus in vitro. Arthritis Res Ther. 2012;14:R179.

    PubMed  CAS  Google Scholar 

  93. Jain R, Shah N, Malick A, Rhodes C. Controlled drug delivery by biodegradable poly(ester) devices: different preparative approaches. Drug Dev Ind Pharm. 1998;24:703–27.

    PubMed  CAS  Google Scholar 

  94. Fu K, Harrell R, Zinski K, Um C, Jaklenec A, Frazier J, et al. A potential approach for decreasing the burst effect of protein from PLGA microspheres. J Pharm Sci. 2003;92:1582–91.

    PubMed  CAS  Google Scholar 

  95. Yuan W, Liu Z. Controlled-release and preserved bioactivity of proteins from (self-assembled) core-shell double-walled microspheres. Int J Nanomedicine. 2012;7:257–70.

    PubMed  CAS  Google Scholar 

  96. van de Weert M, Hennink WE, Jiskoot W. Protein instability in poly(lactic-co-glycolic acid) microparticles. Pharm Res. 2000;17:1159–67.

    PubMed  Google Scholar 

  97. Giteau A, Venier-Julienne MC, Aubert-Pouessel A, Benoit JP. How to achieve sustained and complete protein release from PLGA-based microparticles? Int J Pharm. 2008;350:14–26.

    PubMed  CAS  Google Scholar 

  98. Rothstein SN, Federspiel WJ, Little SR. A simple model framework for the prediction of controlled release from hydrated biodegradable polymer matrices. J Mat Chem. 2008;18:1873–80.

    CAS  Google Scholar 

  99. Rothstein SN, Federspiel WJ, Little SR. A unified mathematical model for the prediction of controlled release from surface and bulk eroding polymer matrices. Biomaterials. 2009;30:1657–64.

    PubMed  CAS  Google Scholar 

  100. Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov. 2003;2:214–21.

    PubMed  CAS  Google Scholar 

  101. Harris JM, Martin NE, Modi M. Pegylation: a novel process for modifying pharmacokinetics. Clin Pharmacokinet. 2001;40:539–51.

    PubMed  CAS  Google Scholar 

  102. Molineux G. Pegylation: engineering improved pharmaceuticals for enhanced therapy. Cancer Treat Rev. 2002;28:13–6.

    PubMed  CAS  Google Scholar 

  103. Lindsay KL, Trepo C, Heintges T, Shiffman ML, Gordon SC, Hoefs JC, et al. Hepatitis interventional therapy group. A randomized, double-blind trial comparing pegylated interferon alfa-2b to interferon alfa-2b as initial treatment for chronic hepatitis C. Hepatology. 2001;34:395–403.

    PubMed  CAS  Google Scholar 

  104. Ferenci P. Peginterferon alfa-2a (40KD) (pegasys) for the treatment of patients with chronic hepatitis C. Int J Clin Pract. 2003;57:610–5.

    PubMed  CAS  Google Scholar 

  105. Wang B, Relling MV, Storm MC, Woo MH, Ribeiro R, Pui CH, et al. Evaluation of immunologic crossreaction of antiasparaginase antibodies in acute lymphoblastic leukemia (ALL) and lymphoma patients. Leukemia. 2003;17:1583–8.

    PubMed  CAS  Google Scholar 

  106. Molineux G. The design and development of Pegfilgrastim (PEG-rmetHuG-CSF, Neulasta). Curr Pharm Des. 2004;10:1235–44.

    PubMed  CAS  Google Scholar 

  107. Yu P, Zheng C, Chen J, Zhang G, Liu Y, Suo X, et al. Investigation on PEGylation strategy of recombinant human interleukin-1 receptor antagonist. Bioorg Med Chem. 2007;15:5396–405.

    PubMed  CAS  Google Scholar 

  108. Pettit DK, Bonnert TP, Eisenman J, Srinivasan S, Paxton R, Beers C, et al. Structure-function studies of interleukin 15 using site-specific mutagenesis, polyethylene glycol conjugation, and homology modeling. J Biol Chem. 1997;272:2312–8.

    PubMed  CAS  Google Scholar 

  109. Lee S, Greenwald RB, McGuire J, Yang K, Shi C. Drug delivery systems employing 1,6-elimination: releasable poly(ethylene glycol) conjugates of proteins. Bioconjug Chem. 2001;12:163–9.

    PubMed  CAS  Google Scholar 

  110. Jun JB, Kim JK, Kim TH, Na YI, Choi CH, Kim YH. Inhibition of the IL-1β-induced expression of matrix metal-loproteinases by controlled release of IL-1 receptor antagonist using injectable and thermo-reversible gels in human osteoarthritis chondrocytes. J Rheum Dis. 2011;18:85–93.

    Google Scholar 

  111. Poznansky MJ, Juliano RL. Biological approaches to the controlled delivery of drugs: a critical review. Pharmacol Rev. 1984;36:277–336.

    PubMed  CAS  Google Scholar 

  112. Gombotz WR, Pettit DK. Biodegradable polymers for protein and peptide drug delivery. Bioconjug Chem. 1995;6:332–51.

    PubMed  CAS  Google Scholar 

  113. Jin KM, Kim YH. Injectable, thermo-reversible and complex coacervate combination gels for protein drug delivery. J Control Release. 2008;127:249–56.

    PubMed  CAS  Google Scholar 

  114. Whitmire RE, Wilson DS, Singh A, Levenston ME, Murthy N, García AJ. Self-assembling nanoparticles for intra-articular delivery of anti-inflammatory proteins. Biomaterials. 2012;33:7665–75.

    PubMed  CAS  Google Scholar 

  115. Liang D, Fu X, Liao M, Yuan W, Su J. Development of dextran microparticles loaded with IL-1Ra of high-encapsulation efficiency and high-bioactivity by a novel method without exposing IL-1Ra to water–oil interfaces. Powder Technol. 2013;235:299–302.

    CAS  Google Scholar 

  116. Akash MSH, Rehman K, Li N, Gao JQ, Sun H, Chen S. Sustained delivery of IL-1Ra from pluronic F127-based thermosensitive gel prolongs its therapeutic potentials. Pharm Res. 2012;29:3475–85.

    PubMed  CAS  Google Scholar 

  117. Akash MSH, Rehman K, Sun H, Chen S. Assessment of release kinetics, stability and polymer interaction of PF127-based thermosensitive gel of IL-1Ra. Pharm Dev Technol. 2013. doi:10.3109/10837450.2013775158.

    PubMed  Google Scholar 

  118. Akash MSH, Rehman K, Chen S. Sustained delivery of IL-1Ra from PF127 gel reduces hyperglycemia in diabetic GK rats. PLoS One. 2013;8:e55925.

    PubMed  CAS  Google Scholar 

  119. Barichello JM, Morishita M, Takayama K, Nagai T. Absorption of insulin from pluronic F-127 gels following subcutaneous administration in rats. Int J Pharm. 1999;184:189–98.

    PubMed  CAS  Google Scholar 

  120. Johnston TP, Punjabi MA, Froelich CJ. Sustained delivery of interleukin-2 from a poloxamer 407 gel matrix following intraperitoneal injection in mice. Pharm Res. 1992;9:425–34.

    PubMed  CAS  Google Scholar 

  121. Katakam M, Bell LN, Banga AK. Effect of surfactants on the physical stability of recombinant human growth hormone. J Pharm Sci. 1995;84:713–6.

    PubMed  CAS  Google Scholar 

  122. Akash MSH, Rehman K, Rasool F, Sethi A, Abrar MA, Irshad A, et al. Alternate therapy of Type 2 diabetes mellitus (T2DM) with Nigella (Ranunculaceae). J Med Plants Res. 2011;5:6885–9.

    Google Scholar 

  123. Sauter NS, Schulthess FT, Galasso R, Castellani LW, Maedler K. The antiinflammatory cytokine interleukin-1 receptor antagonist protects from high-fat diet-induced hyperglycemia. Endocrinology. 2008;149:2208–18.

    PubMed  CAS  Google Scholar 

  124. Ehses JA, Lacraz G, Giroix M, Schmidlin F, Coulaud J, Kassis N, et al. IL-1 antagonism reduces hyperglycemia and tissue inflammation in the type 2 diabetic GK rat. Proc Natl Acad Sci U S A. 2009;106:13998–4003.

    PubMed  CAS  Google Scholar 

  125. Lacraz G, Giroix M, Kassis N, Coulaud J, Galinier A, Noll C, et al. Islet endothelial activation and oxidative stress gene expression is reduced by IL-1Ra treatment in the type 2 dia-betic GK rat. PLoS One. 2009;4:e6963.

    PubMed  Google Scholar 

  126. Akash MSH, Rehman K, Sun H, Chen S. Interleukin-1 receptor antagonist improves normoglycemia and insulin sensitivity in diabetic GK-rats. Eur J Pharmacol. 2013;701:87–95.

    PubMed  CAS  Google Scholar 

  127. Larsen CM, Faulenbach M, Vaag A, Vølund A, Ehses JA, Seifert B, et al. Interleukin-1 receptor antagonist in type 2 diabetes mellitus. N Engl J Med. 2007;356:1517–26.

    PubMed  CAS  Google Scholar 

  128. Larsen CM, Faulenbach M, Vaag A, Ehses JA, Donath MY, Mandrup-Poulsen T. Sustained effects of interleukin-1 receptor antagonist treatment in type 2 diabetes. Diabetes Care. 2009;32:1663–8.

    PubMed  CAS  Google Scholar 

  129. Akash MSH, Rehman K, Gillani Z, Sun H, Chen S. Cross-species comparison of IL-1Ra sequence between human and rat. J Proteomics Bioinform. 2013;6:38–42.

    CAS  Google Scholar 

Download references

Acknowledgments and Disclosures

Authors would like to acknowledge China Scholarship Council to award scholarships for PhDs to Muhammad Sajid Hamid Akash and Kanwal Rehman. One of the authors would like to acknowledge his wife Mrs. Akash for her support in this article. Without her, the writing of this article would not have been possible. Authors declare that they do not have any conflict of interest for this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Sajid Hamid Akash or Shuqing Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akash, M.S.H., Rehman, K. & Chen, S. IL-1Ra and its Delivery Strategies: Inserting the Association in Perspective. Pharm Res 30, 2951–2966 (2013). https://doi.org/10.1007/s11095-013-1118-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1118-0

KEY WORDS

Navigation