Skip to main content
Log in

Systems Pharmacology Modeling of Drug-Induced Modulation of Thyroid Hormones in Dogs and Translation to Human

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To develop a systems pharmacology model based on hormone physiology and pharmacokinetic-pharmacodynamic concepts describing the impact of thyroperoxidase (TPO) inhibition on thyroid hormone homeostasis in the dog and to predict drug-induced changes in thyroid hormones in humans.

Methods

A population model was developed based on a simultaneous analysis of concentration-time data of T4, T3 and TSH in dogs following once daily oral dosing for up to 6-months of a myeloperoxidase inhibitor (MPO-IN1) with TPO inhibiting properties. The model consisted of linked turnover compartments for T4, T3 and TSH including a negative feedback from T4 on TSH concentrations.

Results

The model could well describe the concentration-time profiles of thyroid hormones in dog. Successful model validation was performed by predicting the hormone concentrations during 1-month administration of MPO-IN2 based on its in vitro dog TPO inhibition potency. Using human thyroid hormone turnover rates and TPO inhibitory potency, the human T4 and TSH concentrations upon MPO-IN1 treatment were predicted well.

Conclusions

The model provides a scientific framework for the prediction of drug induced effects on plasma thyroid hormones concentrations in humans via TPO inhibition based on results obtained in in vitro and animal studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AUC0-24 :

Area under the plasma concentration-time curve from time 0–24 h after dosing

C ss :

Steady state plasma concentration of the MPO inhibitor

DIT:

Diiodotyrosine

DRUG :

Function to describe the drug-induced inhibition of T4 production

FEED1 :

Influence of T4 on TSH production

FEED2 :

Influence of T4 on TSH turnover

fr :

The fraction of T4 that undergoes peripheral conversion to T3

Fraction :

The fraction of T3 converted from T4

HPT:

Hypothalamic-pituitary-thyroid

IC 50 :

Concentration which produces 50% of maximum inhibition of TPO

I max :

Maximal inhibition of TPO production

kin T3 :

Zero-order production rate of T3

kin T4 :

Zero-order production of (the precursor of) T4

kin TSH :

Zero-order production of (the precursor of) TSH

k T3 :

First-order rate constant of elimination of T3

k T4 :

First-order rate constant of elimination of T4

k TSH :

First-order rate constant of elimination of TSH

LC-MS/MS:

Liquid chromatography with mass spectrometry detection

LLOQ:

Lower limit of quantification

MIT:

Monoiodotyrosine

MPO:

Myeloperoxidase

MPO-IN1:

MPO inhibitor 1

MPO-IN2:

MPO inhibitor 2

n :

Number of transit compartments

NF1 :

Slope factor of FEED1 relationship

NF2 :

Slope factor of FEED2 relationship

NF3 :

Slope factor in STIM function

PKPD:

Pharmacokinetic-pharmacodynamic

rT3 :

Non-active reverse T3

STIM :

Function to describe TSH influencing the production of T4

T3 :

Triiodothyronine

T3,BL :

Baseline of T3 in plasma

T4 :

Thyroxine

T4,BL :

Baseline of T4 in plasma

TPO:

Thyroperoxidase

TRH:

Thyrotropin-releasing hormone

TSH:

Thyroid stimulating hormone

TSHBL :

Baseline of TSH in plasma

REFERENCES

  1. Guyton AC, Hall JE. Textbook of medicial physiology. Eleventhth ed. Philadelphia: Elsevier Inc; 2006.

    Google Scholar 

  2. Zoeller RT, Tan SW, Tyl RW. General Background on the Hypothalamic-Pituitary-Thyroid (HPT) Axis. Crit Rev Toxicol 2007 01/01; 2012/08;37(1, 2):11–53.

  3. Jameson JL, Weetman AP. Disorders of the thyroid gland. In: Braunwald E, Fauci AS, Kasper DL, Hauser SL, Longo DL, Jameson JL, editors. Harrison’s Principles of Internal Medicine, 15th Edition: McGraw-Hill Companies, Inc; 2001. p. 2060–2064.

  4. Fliers E, Alkemade A, Wiersinga WM, Swaab DF. Hypothalamic thyroid hormone feedback in health and disease. In: Kalsbeek, Fliers E, Hofman, Swaab, Van Someren, Buys, editors. Progress in Brain Research: Elsevier; 2006. p. 189–207.

  5. Ridgway EC, Weintraub BD, Maloof F. Metabolic clearance and production rates of human thyrotropin. J Clin Invest. 1974;53(3):895–903.

    Article  PubMed  CAS  Google Scholar 

  6. Nussey S, Whitehead S. An integrated Approach. Oxford: Bios Scientific Publishers. 2001.

  7. McGuire RA, Hays MT. A kinetic model of human thyroid hormones and their conversion products. J Clin Endocrinol Metab. 1981;53(4):852–62.

    Article  PubMed  CAS  Google Scholar 

  8. Belshaw BE, Barandes M, Becker DV, Berman M. A model of iodine kinetics in the dog. Endocrinology. 1974;95(4):1078–93.

    Article  PubMed  CAS  Google Scholar 

  9. Kaptein EM, Moore GE, Ferguson DC, Hoenig M. Thyroxine and triiodothyronine distribution and metabolism in thyroxine-replaced athyreotic dogs and normal humans. Am J Physiol. 1993;264(1 Pt 1):E90–E100.

    PubMed  CAS  Google Scholar 

  10. van der Graaf PH, Benson N. Systems pharmacology: bridging systems biology and pharmacokinetics-pharmacodynamics (PKPD) in drug discovery and development. Pharm Res. 2011;28(7):1460–4.

    Article  PubMed  Google Scholar 

  11. Degon M, Chipkin SR, Hollot CV, Zoeller RT, Chait Y. A computational model of the human thyroid. Math Biosci. 2008;212(1):22–53.

    Article  PubMed  CAS  Google Scholar 

  12. Hatakeyama T, Yagi H. Computer simulation for hormones related to primary thyropathy. Biol Cybern. 1985;52(4):259–66.

    Article  PubMed  CAS  Google Scholar 

  13. Saratchandran P, Carson ER, Reeve J. An improved mathematical model of human thyroid hormone regulation. Clin Endocrinol (Oxf). 1976;5(5):473–83.

    Article  CAS  Google Scholar 

  14. DiStefano 3rd JJ, Stear EB. On identification of hypothalamo-hypophysial control and feedback relationships with the thyroid gland. J Theor Biol. 1968;19(1):29–50.

    Article  PubMed  Google Scholar 

  15. Danziger L, Elmergreen G. Mathematical models of endocrine systems. Bull Math Biol. 1957;19(1):9–18.

    Google Scholar 

  16. Hays MT, Broome MR, Turrel JM. A multicompartmental model for iodide, thyroxine, and triiodothyronine metabolism in normal and spontaneously hyperthyroid cats. Endocrinology. 1988;122(6):2444–61.

    Article  PubMed  CAS  Google Scholar 

  17. McLanahan ED, Andersen ME, Fisher JW. A biologically based dose–response model for dietary iodide and the hypothalamic-pituitary-thyroid axis in the adult rat: evaluation of iodide deficiency. Toxicol Sci. 2008;102(2):241–53.

    Article  PubMed  CAS  Google Scholar 

  18. Merrill EA, Clewell RA, Robinson PJ, Jarabek AM, Gearhart JM, Sterner TR, et al. PBPK model for radioactive iodide and perchlorate kinetics and perchlorate-induced inhibition of iodide uptake in humans. Toxicol Sci. 2005;83(1):25–43.

    Article  PubMed  CAS  Google Scholar 

  19. Eisenberg M, Samuels M, DiStefano 3rd JJ. Extensions, validation, and clinical applications of a feedback control system simulator of the hypothalamo-pituitary-thyroid axis. Thyroid. 2008;18(10):1071–85.

    Article  PubMed  CAS  Google Scholar 

  20. Eisenberg M, Samuels M, DiStefano 3rd JJ. L-T4 bioequivalence and hormone replacement studies via feedback control simulations. Thyroid. 2006;16(12):1279–92.

    Article  PubMed  CAS  Google Scholar 

  21. Eisenberg MC, Santini F, Marsili A, Pinchera A, DiStefano 3rd JJ. TSH regulation dynamics in central and extreme primary hypothyroidism. Thyroid. 2010;20(11):1215–28.

    Article  PubMed  CAS  Google Scholar 

  22. Mukhopadhyay B, Bhattacharyya R. A mathematical model describing the thyroid-pituitary axis with time delays in hormone transportation. Appl Math. 2006;6:549–64.

    Article  Google Scholar 

  23. Dietrich JW, Boehm BO. Equilibrium behaviour of feedback-coupled physiological saturation kinetics. Cybern Syst. 2006;1:269–74.

    Google Scholar 

  24. Dietrich JW, Tesche A, Pickardt CR, Mitzdorf U. Thyrotropic feedback control: evidence of an additional ultrashort feedback loop from fractal analysis. Cybern Syst 2004 06/01; 2012/08;35(4):315–331.

    Google Scholar 

  25. Kimura S, Ikeda-Saito M. Human myeloperoxidase and thyroid peroxidase, two enzymes with separate and distinct physiological functions, are evolutionarily related members of the same gene family. Proteins. 1988;3(2):113–20.

    Article  PubMed  CAS  Google Scholar 

  26. Malle E, Furtmüller PG, Sattler W, Obinger C. Myeloperoxidase: a target for new drug development? Br J Pharmacol. 2007;152(6):838–54.

    Article  PubMed  CAS  Google Scholar 

  27. Nilsson LB, Eklund G. Direct quantification in bioanalytical LC–MS/MS using internal calibration via analyte/stable isotope ratio. J Pharm Biomed Anal. 2007;43(3):1094–9.

    Article  PubMed  CAS  Google Scholar 

  28. Savic RM, Jonker DM, Kerbusch T, Karlsson MO. Implementation of a transit compartment model for describing drug absorption in pharmacokinetic studies. J Pharmacokinet Pharmacodyn. 2007;34(5):711–26.

    Article  PubMed  CAS  Google Scholar 

  29. Ganjam VK, Wyckoff JT, Comerci CA, Ravis WR. Recrudescence of extra‐thyroidal tissue. T4 and T3 kinetics following thyroidectomy and effect of replacement therapy in the canine. Fed Proc 1980;39:947.

    Google Scholar 

  30. Kinlaw WB, Schwartz HL, Oppenheimer JH. Decreased serum triiodothyronine in starving rats is due primarily to diminished thyroidal secretion of thyroxine. J Clin Invest. 1985;75(4):1238–41.

    Article  PubMed  CAS  Google Scholar 

  31. Nicoloff JT, Low JC, Dussault JH, Fisher DA. Simultaneous measurement of thyroxine and triiodothyronine peripheral turnover kinetics in man. J Clin Invest. 1972;51(3):473–83.

    Article  PubMed  CAS  Google Scholar 

  32. Spencer CA, Hollowell JG, Kazarosyan M, Braverman LE. National health and nutrition examination survey III thyroid-stimulating hormone (TSH)-thyroperoxidase antibody relationships demonstrate that TSH upper reference limits may be skewed by occult thyroid dysfunction. J Clin Endocrinol Metab. 2007;92(11):4236–40.

    Article  PubMed  CAS  Google Scholar 

  33. Liu Y, Liu B, Xie J, Liu YX. A new mathematical model of hypothalamo-pituitary-thyroid axis. Math Comput Model. 1994;19(9):81–90.

    Article  Google Scholar 

  34. Li G, Liu B, Liu Y. A dynamical model of the pulsatile secretion of the hypothalamo-pituitary-thyroid axis. Biosystems. 1995;35(1):83–92.

    Article  PubMed  CAS  Google Scholar 

  35. Hays MT, McGuire RA. Distribution of subcutaneous thyroxine, triiodothyronine, and albumin in man: comparison with intravenous administration using a kinetic model. J Clin Endocrinol Metab. 1980;51(5):1112–7.

    Article  PubMed  CAS  Google Scholar 

  36. Kaplan MM. The role of thyroid hormone deiodination in the regulation of hypothalamo-pituitary function. Neuroendocrinology. 1984;38(3):254–60.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments AND DISCLOSURES

Håkan Eriksson, Anders Viberg, Olof Breuer, Bart Ploeger and Bert Peletier for valuable discussions. The authors state no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra A. G. Visser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ekerot, P., Ferguson, D., Glämsta, EL. et al. Systems Pharmacology Modeling of Drug-Induced Modulation of Thyroid Hormones in Dogs and Translation to Human. Pharm Res 30, 1513–1524 (2013). https://doi.org/10.1007/s11095-013-0989-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-0989-4

KEY WORDS

Navigation