Skip to main content

Advertisement

Log in

Prediction of the Vitreal Half-Life of Small Molecular Drug-Like Compounds

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To build a fast, user-friendly computational model to predict the intravitreal half-lives of drug-like compounds.

Methods

We used multivariate analysis to build intravitreal half-life models using two data sets, one with experimental data derived from both pigmented and albino rabbits and another including only data from experiments with albino rabbits.

Results

The final models had a Q2 value of 0.65 and 0.75 for the mixed and albino rabbit models, respectively. The models performed well in predicting the intravitreal half-life of an external test set. In addition, the models are physiologically interpretable, containing mainly hydrogen bonding and lipophilicity descriptors.

Conclusion

The developed models enable reliable predictions of intravitreal half-lives for use in the early drug development stages, without the need for prior experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

FRB:

freely rotatable bonds

HA:

number of hydrogen bond acceptors

HD:

number of hydrogen bond donors

Htot :

total number of putative hydrogen bonds, i.e. HD+HA

logP:

the logarithm of the octanol-water partition coefficient of the neutral form

log t½ :

the logarithm of the intravitreal half-life, logDx, the logarithm of the octanol-water partition coefficient at pH x

MW:

molecular weight

PCA:

principal component analysis

P-gp:

P-glycoprotein

PLS:

partial least squares

QSPR:

quantitative structure-property relationship

RMSE:

root mean squared error

RMSEP:

root mean squared error of prediction

VIP:

variable importance in the projection

References

  1. Del Amo EM, Urtti A. Current and future ophthalmic drug delivery systems. A shift to the posterior segment. Drug Discov Today. 2008;13(3–4):135–43.

    PubMed  Google Scholar 

  2. Maurice DM, Mishima S. Ocular pharmacokinetics. In: Sears ML, editor. Handbook of experimental pharmacology. Berlin-Heidelberg: Springer Verlag; 1984. p. 16–119.

    Google Scholar 

  3. Mannermaa E, Vellonen KS, Urtti A. Drug transport in corneal epithelium and blood-retina barrier: emerging role of transporters in ocular pharmacokinetics. Adv Drug Deliv Rev. 2006;58(11):1136–63.

    Article  PubMed  CAS  Google Scholar 

  4. Maurice DM. Injection of drugs into the vitrous body. In: Leopold IH, Burns RP, editors. Symposium on ocular therapy. New York: Wiley; 1976. p. 59–72.

    Google Scholar 

  5. Liu W, Liu QF, Perkins R, Drusano G, Louie A, Madu A, et al. Pharmacokinetics of sparfloxacin in the serum and vitreous humor of rabbits: physicochemical properties that regulate penetration of quinolone antimicrobials. Antimicrob Agents Chemother. 1998;42(6):1417–23.

    PubMed  CAS  Google Scholar 

  6. Dias CS, Mitra AK. Vitreal elimination kinetics of large molecular weight FITC-labeled dextrans in albino rabbits using a novel microsampling technique. J Pharm Sci. 2000;89(5):572–8.

    Article  PubMed  CAS  Google Scholar 

  7. Durairaj C, Shah JC, Senapati S, Kompella UB. Prediction of vitreal half-life based on drug physicochemical properties: quantitative structure-pharmacokinetic relationships (QSPKR). Pharm Res. 2009;26(5):1236–60.

    Article  PubMed  CAS  Google Scholar 

  8. Atluri H, Mitra AK. Disposition of short-chain aliphatic alcohols in rabbit vitreous by ocular microdialysis. Exp Eye Res. 2003;76(3):315–20.

    Article  PubMed  CAS  Google Scholar 

  9. Koh HJ, Cheng L, Bessho K, Jones TR, Davidson MC, Freeman WR. Intraocular properties of urokinase-derived antiangiogenic A6 peptide in rabbits. J Ocul Pharmacol Ther. 2004;20(5):439–49.

    PubMed  CAS  Google Scholar 

  10. Hughes P, Krishnamoorthy R, Mitra A. Vitreous disposition of two acylguanosine antivirals in the albino and pigmented rabbit models: a novel ocular microdialysis technique. J Ocular Pharmacol Ther. 1996;12:209–24.

    Article  CAS  Google Scholar 

  11. Zheng S, Hu C, Wei H, Lu Y, Zhang Y, Yang J, et al. Intravitreal pharmacokinetics of liposome-encapsulated amikacin in a rabbit model. Ophtalmology. 1993;100(11):1640–4.

    Google Scholar 

  12. Miglioli PA, Dorigo MT. Antibiotic levels in aqueous and vitreous humor after intraocular administration. Chemotherapy. 1989;35(6):406–9.

    Article  PubMed  CAS  Google Scholar 

  13. Barza M, McCue M. Pharmacokinetics of aztreonam in rabbit eyes. Antimicrob Agents Chemother. 1983;24(4):468–73.

    Article  PubMed  CAS  Google Scholar 

  14. Lee JE, Lim DW, Park HJ, Shin JH, Lee SM, Oum BS. Intraocular toxicity and pharmacokinetics of candesartan in a rabbit model. Invest Ophthalmol Vis Sci. 2011;52(6):2924–9.

    Article  PubMed  CAS  Google Scholar 

  15. Schenk AG, Peyman GA, Paque JT. The intravitreal use of carbenicillin (Geopen) for treatment of pseudomonas endophalmitis. Acta Ophthalmol (Copenh). 1974;52:707–17.

    Article  CAS  Google Scholar 

  16. Barza M, Kane A, Baum J. The effects of infection and probenecid on the transport of carbenicillin from the rabbit vitreous humor. Invest Ophthalmol Vis Sci. 1982;22(6):720–6.

    PubMed  CAS  Google Scholar 

  17. Macha S, Mitra AK. Ocular pharmacokinetics of cephalosporins using microdialysis. J Ocul Pharmacol Ther. 2001;17(5):485–98.

    Article  PubMed  CAS  Google Scholar 

  18. Jay WM, Shockley RK. Toxicity and pharmacokinetics of cefepime (BMY-28142) following intravitreal injection in pigmented rabbit eyes. J Ocul Pharmacol 1988 Winter;4(4):345-349.

  19. Barza M, Lynch E, Baum JL. Pharmacokinetics of newer cephalosporins after subconjunctival and intravitreal injection in rabbits. Arch Ophthalmol. 1993;111(1):121–5.

    Article  PubMed  CAS  Google Scholar 

  20. Shockley RK, Jay WM, Friberg TR, Aziz AM, Rissing JP, Aziz MZ. Intravitreal ceftriaxone in a rabbit model. Dose- and time-dependent toxic effects and pharmacokinetic analysis Arch Ophthalmol. 1984;102(8):1236–8.

    CAS  Google Scholar 

  21. Dolnak DR, Munguia D, Wiley CA, De Clercq E, Bergeron-Lynn GL, Boscher C, et al. Lack of retinal toxicity of the anticytomegalovirus drug (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl) cytosine. Invest Ophthalmol Vis Sci. 1992;33(5):1557–63.

    PubMed  CAS  Google Scholar 

  22. Unal M, Peyman GA, Liang C, Hegazy H, Molinari LC, Chen J, et al. Ocular toxicity of intravitreal clarithromycin. Retina. 1999;19(5):442–6.

    Article  PubMed  CAS  Google Scholar 

  23. Fiscella R, Peyman GA, Fishman PH. Duration of therapeutic levels of intravitreally injected liposome-encapsulated clindamycin in the rabbit. Can J Ophthalmol. 1987;22(6):307–9.

    PubMed  CAS  Google Scholar 

  24. Pearson PA, Jaffe GJ, Martin DF, Cordahi GJ, Grossniklaus H, Schmeisser ET, et al. Evaluation of a delivery system providing long-term release of cyclosporine. Arch Ophthalmol. 1996;114(3):311–7.

    Article  PubMed  CAS  Google Scholar 

  25. Kwak HW, D’Amico DJ. Evaluation of the retinal toxicity and pharmacokinetics of dexamethasone after intravitreal injection. Arch Ophthalmol. 1992;110(2):259–66.

    Article  PubMed  CAS  Google Scholar 

  26. Gupta SK, Velpandian T, Dhingra N, Jaiswal J. Intravitreal pharmacokinetics of plain and liposome-entrapped fluconazole in rabbit eyes. J Ocul Pharmacol Ther. 2000;16(6):511–8.

    Article  PubMed  CAS  Google Scholar 

  27. Anand BS, Atluri H, Mitra AK. Validation of an ocular microdialysis technique in rabbits with permanently implanted vitreous probes: systemic and intravitreal pharmacokinetics of fluorescein. Int J Pharm. 2004 Aug 20;281(1–2):79–88.

    Article  PubMed  CAS  Google Scholar 

  28. Majumdar S, Hippalgaonkar K, Srirangam R. Vitreal kinetics of quinidine in rabbits in the presence of topically coadministered P-glycoprotein substrates/modulators. Drug Metab Dispos. 2009 Aug;37(8):1718–25.

    Article  PubMed  CAS  Google Scholar 

  29. Jarus G, Blumenkranz M, Hernandez E, Sossi N. Clearance of intravitreal fluorouracil. Normal and aphakic vitrectomized eyes Ophthalmology. 1985 Jan;92(1):91–6.

    CAS  Google Scholar 

  30. Macha S, Mitra AK. Ocular disposition of ganciclovir and its monoester prodrugs following intravitreal administration using microdialysis. Drug Metab Dispos. 2002 Jun;30(6):670–5.

    Article  PubMed  CAS  Google Scholar 

  31. Lopez-Cortes LF, Pastor-Ramos MT, Ruiz-Valderas R, Cordero E, Uceda-Montanes A, Claro-Cala CM, et al. Intravitreal pharmacokinetics and retinal concentrations of ganciclovir and foscarnet after intravitreal administration in rabbits. Invest Ophthalmol Vis Sci. 2001 Apr;42(5):1024–8.

    PubMed  CAS  Google Scholar 

  32. Macha S, Duvvuri S, Mitra AK. Ocular disposition of novel lipophilic diester prodrugs of ganciclovir following intravitreal administration using microdialysis. Curr Eye Res. 2004 Feb;28(2):77–84.

    Article  PubMed  CAS  Google Scholar 

  33. Peyman GA, May DR, Ericson ES, Apple D. Intraocular injection of gentamicin. Toxic effects of clearance Arch Ophthalmol. 1974 Jul;92(1):42–7.

    CAS  Google Scholar 

  34. Kane A, Barza M, Baum J. Intravitreal injection of gentamicin in rabbits. Effect of inflammation and pigmentation on half-life and ocular distribution Invest Ophthalmol Vis Sci. 1981 May;20(5):593–7.

    CAS  Google Scholar 

  35. Solans C, Bregante MA, Garcia MA, Perez S. Ocular penetration of grepafloxacin after intravitreal administration in albino and pigmented rabbits. Chemotherapy. 2004 Jun;50(3):133–7.

    Article  PubMed  CAS  Google Scholar 

  36. Peyman GA, Nelsen P, Bennett TO. Intravitreal injection of kanamycin in experimentally induced endophthalmitis. Can J Ophthalmol. 1974 Jul;9(3):322–7.

    PubMed  CAS  Google Scholar 

  37. Schenk AG, Peyman GA. Lincomycin by direct intravitreal injection in the treatment of experimental bacterial endophthalmitis. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1974;190(4):281–91.

    PubMed  CAS  Google Scholar 

  38. Daily MJ, Peyman GA, Fishman G. Intravitreal injection of methicillin for treatment of endophthalmitis. Am J Ophthalmol. 1973 Sep;76(3):343–50.

    PubMed  CAS  Google Scholar 

  39. Velez G, Yuan P, Sung C, Tansey G, Reed GF, Chan CC, et al. Pharmacokinetics and toxicity of intravitreal chemotherapy for primary intraocular lymphoma. Arch Ophthalmol. 2001 Oct;119(10):1518–24.

    Article  PubMed  CAS  Google Scholar 

  40. Leeds NH, Peyman GA, House B. Moxalactam (Moxam) in the treatment of experimental staphylococcal endophthalmitis. Ophthalmic Surg. 1982 Aug;13(8):653–6.

    PubMed  CAS  Google Scholar 

  41. Iyer MN, He F, Wensel TG, Mieler WF, Benz MS, Holz ER. Clearance of intravitreal moxifloxacin. Invest Ophthalmol Vis Sci. 2006 Jan;47(1):317–9.

    Article  PubMed  Google Scholar 

  42. Sloane H, Peyman GA, Raichand M, West S. Netilmicin: new aminoglycoside effective against bacterial endophthalmitis. Can J Ophthalmol. 1981 Jan;16(1):22–6.

    PubMed  CAS  Google Scholar 

  43. Gardiner PA, Michaelson IC, Rees RJ, Robson JM. The Effects of various Types of Penicillin Injected into the Vitreous. Br J Ophthalmol. 1948 Oct;32(10):768–75.

    Article  CAS  Google Scholar 

  44. Duguid JP, Ginsberg M, Fraser IC, Macaskill J, Michaelson IC, Robson JM. Experimental Observations on the Intravitreous use of Penicillin and Other Drugs. Br J Ophthalmol. 1947 Apr;31(4):193–211.

    Article  Google Scholar 

  45. Duvvuri S, Gandhi MD, Mitra AK. Effect of P-glycoprotein on the ocular disposition of a model substrate, quinidine. Curr Eye Res. 2003 Dec;27(6):345–53.

    Article  PubMed  Google Scholar 

  46. Kim EK, Kim HB. Pharmacokinetics of intravitreally injected liposome-encapsulated tobramycin in normal rabbits. Yonsei Med J. 1990 Dec;31(4):308–14.

    PubMed  CAS  Google Scholar 

  47. Pang MP, Branchflower RV, Chang AT, Peyman GA, Blatt H, Minatoya HK. Half-life and vitreous clearance of trifluorothymidine after intravitreal injection in the rabbit eye. Can J Ophthalmol. 1992 Feb;27(1):6–9.

    PubMed  CAS  Google Scholar 

  48. Coco RM, Lopez MI, Pastor JC, Nozal MJ. Pharmacokinetics of intravitreal vancomycin in normal and infected rabbit eyes. J Ocul Pharmacol Ther. 1998 Dec;14(6):555–63.

    Article  PubMed  CAS  Google Scholar 

  49. Shen YC, Wang MY, Wang CY, Tsai TC, Tsai HY, Lee YF, et al. Clearance of intravitreal voriconazole. Invest Ophthalmol Vis Sci. 2007 May;48(5):2238–41.

    Article  PubMed  Google Scholar 

  50. Advanced Chemistry Developement, Toronto, Canada.

  51. Umetrics AB, Box 7960, SE-90719 Umeå, Sweden. Simca-P. ;10.5.

  52. Boxenbaum H, Battle M. Effective half-life in clinical pharmacology. J Clin Pharmacol. 1995 Aug;35(8):763–6.

    PubMed  CAS  Google Scholar 

  53. Siefert HM, Kohlsdorfer C, Steinke W, Witt A. Pharmacokinetics of the 8-methoxyquinolone, moxifloxacin: tissue distribution in male rats. J Antimicrob Chemoter 1999 May; 43 SupplB: 61-67

    Google Scholar 

  54. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002 Jun 6;45(12):2615–23.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments and Disclosures

The Academy of Finland, Magnus Ehrnooth Foundation, Medicinska Understödsföreningen för Liv och Hälsa, Orion-Farmos Research Foundation, and the Graduate School in Pharmaceutical Research are acknowledged for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidi Kidron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kidron, H., del Amo, E.M., Vellonen, KS. et al. Prediction of the Vitreal Half-Life of Small Molecular Drug-Like Compounds. Pharm Res 29, 3302–3311 (2012). https://doi.org/10.1007/s11095-012-0822-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0822-5

Key words

Navigation