Skip to main content

Advertisement

Log in

Near-Infrared Image-Guided Delivery and Controlled Release Using Optimized Thermosensitive Liposomes

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To engineer optimized near-infrared (NIR) active thermosensitive liposomes to potentially achieve image-guided delivery of chemotherapeutic agents.

Methods

Thermosensitive liposomes were surface-coated with either polyethylene glycol or dextran. Differential scanning calorimetry and calcein release studies were conducted to optimize liposomal release, and flow cytometry was employed to determine the in vitro macrophage uptake of liposomes. Indocyanine green (ICG) was encapsulated as the NIR dye to evaluate the in vivo biodistribution in tumor-bearing mice.

Results

The optimized thermosensitive liposome formulation consists of DPPC, SoyPC, and cholesterol in the 100:50:30 molar ratio. Liposomes with dextran and polyethylene glycol demonstrated similar thermal release properties; however in vitro macrophage uptake was greater with dextran. Non-invasive in vivo NIR imaging showed tumor accumulation of liposomes with both coatings, and ex vivo NIR imaging correlated well with actual ICG concentrations in various organs of healthy mice.

Conclusions

The optimized thermosensitive liposome formulation demonstrated stability at 37 °C and efficient burst release at 40 and 42 °C. Dextran exhibited potential for application as a surface coating in thermosensitive liposome formulations. In vivo studies suggest that liposomal encapsulation of ICG permits reliable, real-time monitoring of liposome biodistribution through non-invasive NIR imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

DEX:

dextran

DPPC:

dipalmitoylphosphatidylcholine

DSPE:

distearoylphosphatidylethanolamine

ICG:

indocyanine green

MPPC:

monopalmitoylphosphatidylcholine

NIR:

near-infrared

PEG:

polyethylene glycol

RES:

reticuloendothelial system

Soy-PC:

soy-phosphatidylcholine

Tm :

transition temperature

REFERENCES

  1. Gaber MH, Wu NZ, Hong K, Huang SK, Dewhirst MW, Papahadjopoulos D. Thermosensitive liposomes: extravasation and release of contents in tumor microvascular networks. Int J Radiat Oncol Biol Phys. 1996;36:1177–87.

    Article  PubMed  CAS  Google Scholar 

  2. Ishida O, Maruyama K, Yanagie H, Eriguchi M, Iwatsuru M. Targeting chemotherapy to solid tumors with long-circulating thermosensitive liposomes and local hyperthermia. Jpn J Cancer Res. 2000;91:118–26.

    Article  PubMed  CAS  Google Scholar 

  3. Kong G, Anyarambhatla G, Petros WP, Braun RD, Colvin OM, Needham D, et al. Efficacy of liposomes and hyperthermia in a human tumor xenograft model: importance of triggered drug release. Cancer Res. 2000;60:6950–7.

    PubMed  CAS  Google Scholar 

  4. Needham D, Anyarambhatla G, Kong G, Dewhirst MW. A new temperature-sensitive liposome for use with mild hyperthermia: characterization and testing in a human tumor xenograft model. Cancer Res. 2000;60:1197–201.

    PubMed  CAS  Google Scholar 

  5. Ponce AM, Vujaskovic Z, Yuan F, Needham D, Dewhirst MW. Hyperthermia mediated liposomal drug delivery. Int J Hyperthermia. 2006;22:205–13.

    Article  PubMed  CAS  Google Scholar 

  6. Meyer DE, Shin BC, Kong GA, Dewhirst MW, Chilkoti A. Drug targeting using thermally responsive polymers and local hyperthermia. J Control Release. 2001;74:213–24.

    Article  PubMed  CAS  Google Scholar 

  7. Dewhirst MW, Viglianti BL, Lora-Michiels M, Hanson M, Hoopes PJ. Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hyperthermia. 2003;19:267–94.

    Article  PubMed  CAS  Google Scholar 

  8. Julianoand RL, Stamp D. The effect of particle size and charge on the clearance rates of liposomes and liposome encapsulated drugs. Biochem Biophys Res Commun. 1975;63:651–8.

    Article  Google Scholar 

  9. Klibanov AL, Maruyama K, Torchilin VP, Huang L. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 1990;268:235–7.

    Article  PubMed  CAS  Google Scholar 

  10. Allenand TM, Cleland LG. Serum-induced leakage of liposome contents. Biochim Biophys Acta. 1980;597:418–26.

    Article  Google Scholar 

  11. Banno B, Ickenstein LM, Chiu GN, Bally MB, Thewalt J, Brief E, et al. The functional roles of poly(ethylene glycol)-lipid and lysolipid in the drug retention and release from lysolipid-containing thermosensitive liposomes in vitro and in vivo. J Pharm Sci. 2010;99:2295–308.

    PubMed  CAS  Google Scholar 

  12. Rawicz W, Olbrich KC, McIntosh T, Needham D, Evans E. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys J. 2000;79:328–39.

    Article  PubMed  CAS  Google Scholar 

  13. McConlogueand CW, Vanderlick TK. Monolayers with one component of variable solubility: studies of lysophosphocholine/DPPC mixtures. Langmuir. 1998;14:6556–62.

    Article  Google Scholar 

  14. Millsand JK, Needham D. Lysolipid incorporation in dipalmitoylphosphatidylcholine bilayer membranes enhances the ion permeability and drug release rates at the membrane phase transition. Biochim Biophys Acta. 2005;1716:77–96.

    Article  Google Scholar 

  15. Ulrich AS. Biophysical aspects of using liposomes as delivery vehicles. Biosci Rep. 2002;22:129–50.

    Article  PubMed  CAS  Google Scholar 

  16. Gaber MH, Hong K, Huang SK, Papahadjopoulos D. Thermosensitive sterically stabilized liposomes: formulation and in vitro studies on mechanism of doxorubicin release by bovine serum and human plasma. Pharm Res. 1995;12:1407–16.

    Article  PubMed  CAS  Google Scholar 

  17. Needhamand D, Dewhirst MW. The development and testing of a new temperature-sensitive drug delivery system for the treatment of solid tumors. Adv Drug Deliv Rev. 2001;53:285–305.

    Article  Google Scholar 

  18. Hilderbrandand SA, Weissleder R. Near-infrared fluorescence: application to in vivo molecular imaging. Curr Opin Chem Biol. 2010;14:71–9.

    Article  Google Scholar 

  19. Ghoroghchian PP, Therien MJ, Hammer DA. In vivo fluorescence imaging: a personal perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1:156–67.

    Article  PubMed  CAS  Google Scholar 

  20. Bjornsson OG, Murphy R, Chadwick VS. Physiochemical studies of indocyanine green (ICG): absorbance/concentration relationship, pH tolerance and assay precision in various solvents. Experientia. 1982;38:1441–2.

    Article  PubMed  CAS  Google Scholar 

  21. Lemmerand B, Nold G. Circadian changes in estimated hepatic blood flow in healthy subjects. Br J Clin Pharmacol. 1991;32:627–9.

    Google Scholar 

  22. Goodwin AP, Tabakman SM, Welsher K, Sherlock SP, Prencipe G, Dai H. Phospholipid-dextran with a single coupling point: a useful amphiphile for functionalization of nanomaterials. J Am Chem Soc. 2009;131:289–96.

    Article  PubMed  CAS  Google Scholar 

  23. Neuman WF, Morrow PE, Toribara TY, Casarett LJ, Mulryan BJ, Hodge HC. Evidence for complex ion formation in the calcium-bicarbonate system. J Biol Chem. 1956;219:551–5.

    PubMed  CAS  Google Scholar 

  24. Kirby C, Clarke J, Gregoriadis G. Effect of the cholesterol content of small unilamellar liposomes on their stability in vivo and in vitro. Biochem J. 1980;186:591–8.

    PubMed  CAS  Google Scholar 

  25. Hsuand MJ, Juliano RL. Interactions of liposomes with the reticuloendothelial system. II: Nonspecific and receptor-mediated uptake of liposomes by mouse peritoneal macrophages. Biochim Biophys Acta. 1982;720:411–9.

    Article  Google Scholar 

  26. Dams ET, Laverman P, Oyen WJ, Storm G, Scherphof GL, van Der Meer JW, et al. Accelerated blood clearance and altered biodistribution of repeated injections of sterically stabilized liposomes. J Pharmacol Exp Ther. 2000;292:1071–9.

    PubMed  CAS  Google Scholar 

  27. Sroda K, Rydlewski J, Langner M, Kozubek A, Grzybek M, Sikorski AF. Repeated injections of PEG-PE liposomes generate anti-PEG antibodies. Cell Mol Biol Lett. 2005;10:37–47.

    PubMed  CAS  Google Scholar 

  28. Bendas G, Rothe U, Scherphof GL, Kamps JA. The influence of repeated injections on pharmacokinetics and biodistribution of different types of sterically stabilized immunoliposomes. Biochim Biophys Acta. 2003;1609:63–70.

    Article  PubMed  CAS  Google Scholar 

  29. Ishidaand T, Kiwada H. Accelerated blood clearance (ABC) phenomenon upon repeated injection of PEGylated liposomes. Int J Pharm. 2008;354:56–62.

    Article  Google Scholar 

  30. Senior J, Delgado C, Fisher D, Tilcock C, Gregoriadis G. Influence of surface hydrophilicity of liposomes on their interaction with plasma protein and clearance from the circulation: studies with poly(ethylene glycol)-coated vesicles. Biochim Biophys Acta. 1991;1062:77–82.

    Article  PubMed  CAS  Google Scholar 

  31. Torchilin VP, Omelyanenko VG, Papisov MI, Bogdanov Jr AA, Trubetskoy VS, Herron JN, et al. Poly(ethylene glycol) on the liposome surface: on the mechanism of polymer-coated liposome longevity. Biochim Biophys Acta. 1994;1195:11–20.

    Article  PubMed  CAS  Google Scholar 

  32. Torchilin VP, Shtilman MI, Trubetskoy VS, Whiteman K, Milstein AM. Amphiphilic vinyl polymers effectively prolong liposome circulation time in vivo. Biochim Biophys Acta. 1994;1195:181–4.

    Article  PubMed  CAS  Google Scholar 

  33. Unezaki S, Maruyama K, Takahashi N, Koyama M, Yuda T, Suginaka A, et al. Enhanced delivery and antitumor activity of doxorubicin using long-circulating thermosensitive liposomes containing amphipathic polyethylene glycol in combination with local hyperthermia. Pharm Res. 1994;11:1180–5.

    Article  PubMed  CAS  Google Scholar 

  34. Woodle MC, Engbers CM, Zalipsky S. New amphipatic polymer-lipid conjugates forming long-circulating reticuloendothelial system-evading liposomes. Bioconjug Chem. 1994;5:493–6.

    Article  PubMed  CAS  Google Scholar 

  35. Zalipsky S, Hansen CB, Oaks JM, Allen TM. Evaluation of blood clearance rates and biodistribution of poly(2-oxazoline)-grafted liposomes. J Pharm Sci. 1996;85:133–7.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

This work was supported by Mercer University Seed Grant and Georgia Cancer Coalition Cancer Research Award. D. C. Turner and D. Moshkelani received Pre-Doctoral fellowships from the American Foundation of Pharmaceutical Education. Some experiments were conducted in the Chemistry Department of Emory University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailing Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turner, D.C., Moshkelani, D., Shemesh, C.S. et al. Near-Infrared Image-Guided Delivery and Controlled Release Using Optimized Thermosensitive Liposomes. Pharm Res 29, 2092–2103 (2012). https://doi.org/10.1007/s11095-012-0738-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0738-0

KEY WORDS

Navigation