Skip to main content

Advertisement

Log in

Attenuation of Phosphorylation by Deoxycytidine Kinase is Key to Acquired Gemcitabine Resistance in a Pancreatic Cancer Cell Line: Targeted Proteomic and Metabolomic Analyses in PK9 Cells

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Multiple proteins are involved in activation and inactivation of 2′,2′-difluorodeoxycytidine (gemcitabine, dFdC). We aimed to clarify the mechanism of dFdC resistance in a pancreatic cancer cell line by applying a combination of targeted proteomic and metabolomic analyses.

Methods

Twenty-five enzyme and transporter proteins and 6 metabolites were quantified in sensitive and resistant pancreatic cancer cell lines, PK9 and RPK9, respectively.

Results

The protein concentration of deoxycytidine kinase (dCK) in RPK9 cells was less than 0.02-fold (2 %) compared with that in PK9 cells, whereas the differences (fold) were within a factor of 3 for other proteins. Targeted metabolomic analysis revealed that phosphorylated forms of dFdC were reduced to less than 0.2 % in RPK9 cells. The extracellular concentration of 2′,2′-difluorodeoxyuridine (dFdU), an inactive metabolite of dFdC, reached the same level as the initial dFdC concentration in RPK9 cells. However, tetrahydrouridine treatment did not increase phosphorylated forms of dFdC and did not reverse dFdC resistance in RPK9 cells, though this treatment inhibits production of dFdU.

Conclusions

Combining targeted proteomics and metabolomics suggests that acquisition of resistance in RPK9 cells is due to attenuation of dFdC phosphorylation via suppression of dCK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABC:

ATP binding cassette

BCRP:

breast cancer resistance protein

CDA:

cytidine deaminase

CNT:

concentrative nucleoside transporter

CTPS:

cytidine 5′-triphosphate synthetase

dCK:

deoxycytidine kinase

DCTD:

deoxycytidylate deaminase

dFdC:

2′,2′-difluorodeoxycytidine or gemcitabine

dFdCDP:

gemcitabine diphosphate

dFdCMP:

gemcitabine monophosphate

dFdCTP:

gemcitabine triphosphate

dFdU:

2′,2′-difluorodeoxyuridine

dFdUMP:

2′,2′-difluorodeoxyuridine monophosphate

ENT:

equilibrative nucleoside transporter

Fara-AMP:

9-beta-D-arabinofuranosyl-2-fluoroadenine monophosphate

LC-MS/MS:

liquid chromatography-tandem mass spectrometer

MDR1:

multidrug resistance protein 1

MRM:

multiple reaction monitoring

MRP:

multidrug resistance-associated proteins

5′-NT:

cytosolic 5′-nucleotidase

RRM1:

ribonucleotide reductase subunit 1

RRM2:

ribonucleotide reductase subunit 2

THU:

tetrahydrouridine

References

  1. Matsuno S, Egawa S, Fukuyama S, Motoi F, Sunamura M, Isaji S, Imaizumi T, Okada S, Kato H, Suda K, Nakao A, Hiraoka T, Hosotani R, Takeda K. Pancreatic Cancer Registry in Japan: 20 years of experience. Pancreas. 2004;28:219–30.

    Article  PubMed  Google Scholar 

  2. Oettle H, Neuhaus P. Adjuvant therapy in pancreatic cancer. A critical appraisal. Drugs. 2007;67:2293–310.

    Article  PubMed  CAS  Google Scholar 

  3. Carmichael J, Fink U, Russell RC, Spittle MF, Harris AL, Spiessi G, Blatter J. Phase II study of gemcitabine in patients with advanced pancreatic cancer. Br J Cancer. 1996;73:101–5.

    Article  PubMed  CAS  Google Scholar 

  4. Li D, Xie K, Wolff R, Abbruzzese JL. Pancreatic cancer. Lancet. 2004;363:1049–57.

    Article  PubMed  CAS  Google Scholar 

  5. Jordheim LP, Dumontet C. Review of recent studies on resistance to cytotoxic deoxynucleoside analogues. Biochim Biophys Acta. 2007;1776:138–59.

    PubMed  CAS  Google Scholar 

  6. Baldwin SA, Beal PR, Yao SY, King AE, Cass CE, Young JD. The equilibrative nucleoside transporter family, SLC29. Pflugers Arch. 2004;447:735–43.

    Article  PubMed  CAS  Google Scholar 

  7. Gray JH, Owen RP, Giacomini KM. The concentrative nucleoside transporter family, SLC28. Pflugers Arch. 2004;447:728–34.

    Article  PubMed  CAS  Google Scholar 

  8. Bouffard DY, Laliberte J, Momparler RL. Kinetic studies on 2′,2′-difluorodeoxycytidine (Gemcitabine) with purified human deoxycytidine kinase and cytidine deaminase. Biochem Pharmacol. 1993;45:1857–61.

    Article  PubMed  CAS  Google Scholar 

  9. Van Rompay AR, Johansson M, Karlsson A. Phosphorylation of deoxycytidine analog monophosphates by UMP-CMP kinase: molecular characterization of the human enzyme. Mol Pharmacol. 1999;56:562–9.

    PubMed  Google Scholar 

  10. Huang P, Chubb S, Hertel LW, Grindey GB, Plunkett W. Action of 2′,2′-difluorodeoxycytidine on DNA synthesis. Cancer Res. 1991;51:6110–7.

    PubMed  CAS  Google Scholar 

  11. Heinemann V, Xu YZ, Chubb S, Sen A, Hertel LW, Grindey GB, Plunkett W. Inhibition of ribonucleotide reduction in CCRF-CEM cells by 2′,2′-difluorodeoxycytidine. Mol Pharmacol. 1990;38:567–72.

    PubMed  CAS  Google Scholar 

  12. Marce S, Molina-Arcas M, Villamor N, Casado FJ, Campo E, Pastor-Anglada M, Colomer D. Expression of human equilibrative nucleoside transporter 1 (hENT1) and its correlation with gemcitabine uptake and cytotoxicity in mantle cell lymphoma. Haematologica. 2006;91:895–902.

    PubMed  CAS  Google Scholar 

  13. Achiwa H, Oguri T, Sato S, Maeda H, Niimi T, Ueda R. Determinants of sensitivity and resistance to gemcitabine: the roles of human equilibrative nucleoside transporter 1 and deoxycytidine kinase in non-small cell lung cancer. Cancer Sci. 2004;95:753–7.

    Article  PubMed  CAS  Google Scholar 

  14. Lam W, Leung CH, Bussom S, Cheng YC. The impact of hypoxic treatment on the expression of phosphoglycerate kinase and the cytotoxicity of troxacitabine and gemcitabine. Mol Pharmacol. 2007;72:536–44.

    Article  PubMed  CAS  Google Scholar 

  15. Giovannetti E, Del Tacca M, Mey V, Funel N, Nannizzi S, Ricci S, Orlandini C, Boggi U, Campani D, Del Chiaro M, Iannopollo M, Bevilacqua G, Mosca F, Danesi R. Transcription analysis of human equilibrative nucleoside transporter-1 predicts survival in pancreas cancer patients treated with gemcitabine. Cancer Res. 2006;66:3928–35.

    Article  PubMed  CAS  Google Scholar 

  16. Tsujie M, Nakamori S, Nakahira S, Takahashi Y, Hayashi N, Okami J, Nagano H, Dono K, Umeshita K, Sakon M, Monden M. Human equilibrative nucleoside transporter 1, as a predictor of 5-fluorouracil resistance in human pancreatic cancer. Anticancer Res. 2007;27:2241–9.

    PubMed  CAS  Google Scholar 

  17. Ohhashi S, Ohuchida K, Mizumoto K, Fujita H, Egami T, Yu J, Toma H, Sadatomi S, Nagai E, Tanaka M. Down-regulation of deoxycytidine kinase enhances acquired resistance to gemcitabine in pancreatic cancer. Anticancer Res. 2008;28:2205–12.

    PubMed  CAS  Google Scholar 

  18. Nakano Y, Tanno S, Koizumi K, Nishikawa T, Nakamura K, Minoguchi M, Izawa T, Mizukami Y, Okumura T, Kohgo Y. Gemcitabine chemoresistance and molecular markers associated with gemcitabine transport and metabolism in human pancreatic cancer cells. Br J Cancer. 2007;96:457–63.

    Article  PubMed  CAS  Google Scholar 

  19. Ohtsuki S, Schaefer O, Kawakami H, Inoue T, Liehner S, Sato A, Ishiguro N, Kishimoto W, Ludwig-Schwellinger E, Ebner T, Terasaki T. Simultaneous absolute protein quantification of transporters, cytochrome P450s and UDP-glucuronosyltransferases as a novel approach for the characterization of individual human liver: Comparison with mRNA levels and activities. Drug Metab Dispos. 2011;40:83–92.

    Google Scholar 

  20. Lotfi K, Karlsson K, Fyrberg A, Juliusson G, Jonsson V, Peterson C, Eriksson S, Albertioni F. The pattern of deoxycytidine- and deoxyguanosine kinase activity in relation to messenger RNA expression in blood cells from untreated patients with B-cell chronic lymphocytic leukemia. Biochem Pharmacol. 2006;71:882–90.

    Article  PubMed  CAS  Google Scholar 

  21. Kamiie J, Ohtsuki S, Iwase R, Ohmine K, Katsukura Y, Yanai K, Sekine Y, Uchida Y, Ito S, Terasaki T. Quantitative atlas of membrane transporter proteins: development and application of a highly sensitive simultaneous LC/MS/MS method combined with novel in-silico peptide selection criteria. Pharm Res. 2008;25:1469–83.

    Article  PubMed  CAS  Google Scholar 

  22. Usova EV, Eriksson S. Identification of residues involved in the substrate specificity of human and murine dCK. Biochem Pharmacol. 2002;64:1559–67.

    Article  PubMed  CAS  Google Scholar 

  23. Gilbert JA, Salavaggione OE, Ji Y, Pelleymounter LL, Eckloff BW, Wieben ED, Ames MM, Weinshilboum RM. Gemcitabine pharmacogenomics: cytidine deaminase and deoxycytidylate deaminase gene resequencing and functional genomics. Clin Cancer Res. 2006;12:1794–803.

    Article  PubMed  CAS  Google Scholar 

  24. Mawuenyega KG, Kaji H, Yamuchi Y, Shinkawa T, Saito H, Taoka M, Takahashi N, Isobe T. Large-scale identification of Caenorhabditis elegans proteins by multidimensional liquid chromatography-tandem mass spectrometry. J Proteome Res. 2003;2:23–35.

    Article  PubMed  CAS  Google Scholar 

  25. Dumontet C, Fabianowska-Majewska K, Mantincic D, Callet Bauchu E, Tigaud I, Gandhi V, Lepoivre M, Peters GJ, Rolland MO, Wyczechowska D, Fang X, Gazzo S, Voorn DA, Vanier-Viornery A, MacKey J. Common resistance mechanisms to deoxynucleoside analogues in variants of the human erythroleukaemic line K562. Br J Haematol. 1999;106:78–85.

    Article  PubMed  CAS  Google Scholar 

  26. Kazuno H, Sakamoto K, Fujioka A, Fukushima M, Matsuda A, Sasaki T. Possible antitumor activity of 1-(3-C-ethynyl-beta-D-ribo-pentofuranosyl)cytosine (ECyd, TAS-106) against an established gemcitabine (dFdCyd)-resistant human pancreatic cancer cell line. Cancer Sci. 2005;96:295–302.

    Article  PubMed  CAS  Google Scholar 

  27. Ohtsuki S, Uchida Y, Kubo Y, Terasaki T. Quantitative targeted absolute proteomics-based ADME research as a new path to drug discovery and development: Methodology, advantages, strategy, and prospects. J Pharm Sci. 2011;100:3547–59.

    Article  PubMed  CAS  Google Scholar 

  28. Barnidge DR, Dratz EA, Martin T, Bonilla LE, Moran LB, Lindall A. Absolute quantification of the G protein-coupled receptor rhodopsin by LC/MS/MS using proteolysis product peptides and synthetic peptide standards. Anal Chem. 2003;75:445–51.

    Article  PubMed  CAS  Google Scholar 

  29. Funamizu N, Okamoto A, Kamata Y, Misawa T, Uwagawa T, Gocho T, Yanaga K, Manome Y. Is the resistance of gemcitabine for pancreatic cancer settled only by overexpression of deoxycytidine kinase? Oncol Rep. 2010;23:471–5.

    PubMed  CAS  Google Scholar 

  30. Nishio R, Tsuchiya H, Yasui T, Matsuura S, Kanki K, Kurimasa A, Hisatome I, Shiota G. Disrupted plasma membrane localization of equilibrative nucleoside transporter 2 in the chemoresistance of human pancreatic cells to gemcitabine (dFdCyd). Cancer Sci. 2011;102:622–9.

    Article  PubMed  CAS  Google Scholar 

  31. Reid G, Wielinga P, Zelcer N, De Haas M, Van Deemter L, Wijnholds J, Balzarini J, Borst P. Characterization of the transport of nucleoside analog drugs by the human multidrug resistance proteins MRP4 and MRP5. Mol Pharmacol. 2003;63:1094–103.

    Article  PubMed  CAS  Google Scholar 

  32. Bergman AM, Eijk PP, Ruiz van Haperen VW, Smid K, Veerman G, Hubeek I, van den Ijssel P, Ylstra B, Peters GJ. In vivo induction of resistance to gemcitabine results in increased expression of ribonucleotide reductase subunit M1 as the major determinant. Cancer Res. 2005;65:9510–6.

    Article  PubMed  CAS  Google Scholar 

  33. Goan YG, Zhou B, Hu E, Mi S, Yen Y. Overexpression of ribonucleotide reductase as a mechanism of resistance to 2,2-difluorodeoxycytidine in the human KB cancer cell line. Cancer Res. 1999;59:4204–7.

    PubMed  CAS  Google Scholar 

  34. Ferrandina G, Mey V, Nannizzi S, Ricciardi S, Petrillo M, Ferlini C, Danesi R, Scambia G, Del Tacca M. Expression of nucleoside transporters, deoxycitidine kinase, ribonucleotide reductase regulatory subunits, and gemcitabine catabolic enzymes in primary ovarian cancer. Cancer Chemother Pharmacol. 2010;65:679–86.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments & Disclosures

We thank K. Hamase for technical suggestions and Shiseido Co. Ltd for providing columns. This study was supported in part by a Grant-in-Aid for JSPS Fellows, a Global COE Program from the Japan Society for the Promotion of Science, and a Grant for Development of Creative Technology Seeds Supporting Program for Creating University Ventures from Japan Science and Technology Agency. This study was also supported in part by the Industrial Technology Research Grant Program from the New Energy and the Industrial Technology Development Organization of Japan, and the Funding Program for Next Generation World-Leading Researchers by the Cabinet Office, Government of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Terasaki.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 234kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohmine, K., Kawaguchi, K., Ohtsuki, S. et al. Attenuation of Phosphorylation by Deoxycytidine Kinase is Key to Acquired Gemcitabine Resistance in a Pancreatic Cancer Cell Line: Targeted Proteomic and Metabolomic Analyses in PK9 Cells. Pharm Res 29, 2006–2016 (2012). https://doi.org/10.1007/s11095-012-0728-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0728-2

KEY WORDS

Navigation