Skip to main content
Log in

Dehydration Kinetics and Crystal Water Dynamics of Carbamazepine Dihydrate

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To investigate the dehydration of carbamazepine dihydrate, combining kinetics and crystal water dynamics with electronic structure calculations.

Methods

Thermal microscopy, moisture sorption, and thermogravimetric analysis (TGA) were applied to evaluate the effects on relative humidity (RH) and temperature, while crystal water dynamics were monitored by 2D-FTIR correlation spectroscopy (2DCOS) and the nature of the H-bonding network was investigated by 3D-periodic DFT calculations.

Results

It was found that the dihydrate is unstable below 40% RH and/or above the glass transition temperature (T g  ∼ 53°C). At room temperature, amorphous carbamazepine is formed at RH ∼ 0%, form I at RH ∼ 10%, and mixtures of forms I and III at higher RH. Above the T g , the dehydration yields partially crystalline mixtures of forms I and IV between 50–100°C, and form I above 100°C. In all cases, the amorphous product crystallizes to form IV. Thermal analysis and 2DCOS revealed a biphasic dehydration process. Kinetic modelling suggests a diffusion-controlled dehydration below T g and reaction interface-controlled kinetics above T g .

Conclusions

The dehydration consists of two overlapping water removal processes, with the water molecule attached to the amide C=O departing faster, probably due to the destabilizing effect of anti-bonding interactions between the water H1s and the carbonyl O2p orbital.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

REFERENCES

  1. Khankari R, Grant DJW. Pharmaceutical hydrates. Thermochim Acta. 1995;248:61–79.

    Article  CAS  Google Scholar 

  2. Giron D, Goldbronn C, Mutz M, Pfeffer S, Piechon P, Schwab P. Solid state characterizations of pharmaceutical hydrates. J Thermal Anal Calorim. 2002;68:453–65.

    Article  CAS  Google Scholar 

  3. Petit S, Coquerel G. Mechanism of several solid-solid transformations between dihydrated and anhydrous copper(II) 8-hydroxyquinolinates. Proposition for a unified model for the dehydration of molecular crystals. Chem Mater. 1996;8:2247–58.

    Article  CAS  Google Scholar 

  4. Galwey AK. Structure and order in thermal dehydrations of crystalline solids. Thermochim Acta. 2000;355:181–238.

    Article  CAS  Google Scholar 

  5. Jørgensen A, Strachan C, Pöllänen K, Koradia V, Tian F, Rantanen J. An insight into water of crystallization during processing using vibrational spectroscopy. J Pharm Sci. 2009;98:3903–32.

    Article  PubMed  Google Scholar 

  6. Beard M, Ghita O, McCabe J, Evans K. Monitoring dehydration kinetics using simultaneous thermal and spectral methods. J Raman Spectrosc. 2010;41:1283–8.

    Article  CAS  Google Scholar 

  7. Agbada C, York P. Dehydration of theophylline monohydrate powder – effects of particle size and sample weight. Int J Pharm. 1994;106:33–40.

    Article  CAS  Google Scholar 

  8. Sheth A, Zhou D, Muller F, Grant DJW. Dehydration kinetics of piroxicam monohydrate and relationship to lattice energy and structure. J Pharm Sci. 2004;93:3013–26.

    Article  PubMed  CAS  Google Scholar 

  9. Han J, Suryanarayanan R. Influence of environmental conditions on the kinetics and mechanism of dehydration of carbamazepine dihydrate. Pharm Dev Technol. 1998;3:587–96.

    Article  PubMed  CAS  Google Scholar 

  10. Yoneda S, Sugawara Y, Urabe H. Crystal water dynamics of guanosine dihydrate: analysis of atomic displacement parameters, time profile of hydrogen-bonding probability, and translocation of water by MD simulation. J Phys Chem B. 2005;109:1304–12.

    Article  PubMed  CAS  Google Scholar 

  11. Grzesiak A, Lang M, Kim K, Matzger A. Comparison of the four anhydrous polymorphs of carbamazepine and the crystal structure of form I. J Pharm Sci. 2003;92:2260–71.

    Article  PubMed  CAS  Google Scholar 

  12. Reck G, Dietz G. The order–disorder structure of carbamazepine dihydrate: 5 H-dibenz[b, f]azepine-5-carboxamide dihydrate, C15H12N2O.2H2O. Cryst Res Technol. 1986;21:1463–8.

    Article  CAS  Google Scholar 

  13. Fleischman S, Kuduva S, McMahon J, Moulton B, Bailey Walsh R, Rodriguez-Hornedo N, Zaworotko M. Crystal engineering of the composition of pharmaceutical phases: multiple-component crystalline solids involving carbamazepine. Cryst Growth Des. 2003;3:909–19.

    Article  CAS  Google Scholar 

  14. Meyer M, Straughn A, Jarvi E, Wood G, Pelsor F, Shah V. The bioinequivalence of carbamazepine tablets with a history of clinical failures. Pharm Res. 1992;9:1612–6.

    Article  PubMed  CAS  Google Scholar 

  15. Kobayashi Y, Ito S, Itai S, Yamamoto K. Physicochemical properties and bioavailability of carbamazepine polymorphs and dihydrate. Int J Pharm. 2000;193:137–46.

    Article  PubMed  CAS  Google Scholar 

  16. Harris R, Ghi P, Puschmann H, Apperley D, Griesser UJ, Hammond R, Ma C, Roberts K, Pearce G, Yates J, Pickard C. Structural studies of the polymorphs of carbamazepine, its dihydrate, and two solvates. Org Process Res Dev. 2005;9:902–10.

    Article  CAS  Google Scholar 

  17. Gelbrich T, Hurtshouse M. Systematic investigation of the relationships between 25 crystal structures containing the carbamazepine molecule or a close analogue: a case study of the XPac method. Cryst Eng Comm. 2006;8:448–60.

    CAS  Google Scholar 

  18. Kogan A, Popov I, Uvarov V, Cohen S, Aserin A, Garti N. Crystallization of carbamazepine pseudopolymorphs from nonionic microemulsions. Langmuir. 2008;24:722–33.

    Article  PubMed  CAS  Google Scholar 

  19. Dugue J, Ceolin R, Rouland JC, Lepage F. Polymorphism of carbamazepine-solid state studies. Pham Acta Helv. 1991;66:307–10.

    CAS  Google Scholar 

  20. Griesser UJ. Untersuchungen zur Polymorphie und Pseudopolymorphie von Arzneistoffen de Pharmacopoea Europaea unter besondered Berücksichtigung wasserhaltiger Kristallformen. Dissertation, University of Innsbruck. 1991.

  21. Li Y, Han J, Zhang G, Grant D, Suryanarayanan R. In situ dehydration of carbamazepine dihydrate: a novel technique to prepare amorphous anhydrous carbamazepine. Pharm Devel Technol. 2000;5:257–66.

    Article  CAS  Google Scholar 

  22. Surana R, Pyne A, Suryanarayanan R. Solid-vapor interactions: influence of environmental conditions on the dehydration of carbamazepine dihydrate. Pharm Sci Tech. 2003;4:1–10.

    Google Scholar 

  23. Murphy D, Rodríguez-Cintrón F, Langevin B, Kelly RC, Rodríguez-Hornedo N. Solution-mediated phase transformation of anhydrous to dihydrate carbamazepine and the effect of lattice disorder. Int J Pharm. 2002;246:121–34.

    Article  PubMed  CAS  Google Scholar 

  24. Kogermann K, Aaltonen J, Strachan C, Pöllänen K, Veski P, Heinämäki J, Yliruusi J, Rantanen J. Qualitative in situ analysis of multiple solid-state forms using spectroscopy and partial least squares discriminant modeling. J Pharm Sci. 2007;96:1802–20.

    Article  PubMed  CAS  Google Scholar 

  25. McMahon L, Timmins P, Williams A, York P. Characterization of dihydrates prepared from carbamazepine polymorphs. J Pharm Sci. 1996;85:1064–9.

    Article  PubMed  CAS  Google Scholar 

  26. Otsuka M, Ofusa T, Matsuda Y. Effect of environmental humidity on the transformation pathway of carbamazepine polymorphic modifications during grinding. Colloids Surf B Biointerfaces. 1999;13:163–273.

    Article  Google Scholar 

  27. Fleming S, Rohl A. GDIS: a visualization program for molecular and periodic systems. Z Kristallogr. 2005;220:580–4.

    Article  CAS  Google Scholar 

  28. Gale J, Rohl A. The General Utility Lattice Program (GULP). Molec Sim. 2003;29:291–341.

    Article  CAS  Google Scholar 

  29. Mayo S, Olafson B, Goddard III W. DREIDING: a generic force field for molecular simulations. J Phys Chem. 1990;94:8897–909.

    Article  CAS  Google Scholar 

  30. Jakalian A, Bush B, Jack D, Bayly C. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method. J Comput Chem. 2000;21:132–46.

    Article  CAS  Google Scholar 

  31. Jakalian A, Jack D, Bayly C. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parametrization and validation. J Comput Chem. 2000;23:1623–41.

    Article  Google Scholar 

  32. Eyring H. The activated complex in chemical reactions. J Chem Phys. 1935;3:107–15.

    Article  CAS  Google Scholar 

  33. Noda I. Two-dimensional infrared (2D IR) spectroscopy: theory and applications. Appl Spectrosc. 1990;44:550–61.

    Article  CAS  Google Scholar 

  34. Troullier N, Martins JL. Efficient pseudopotentials for plane-wave calculations. Phys Rev B. 1991;43:1993–2006.

    Article  CAS  Google Scholar 

  35. Dion M, Rydberg H, Schröder E, Langreth D, Lundqvist B. Van der Waals density functional for general geometries. Phys Rev Lett. 2004;92:1–4.

    Article  Google Scholar 

  36. Dronskowski R, Bloechl P. Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J Phys Chem. 1993;97:8617–24.

    Article  CAS  Google Scholar 

  37. Soler JM, Artacho E, Gale J, García A, Junquera J, Ordejón P, Sánchez-Portal D. The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter. 2002;14:2745–79.

    Article  CAS  Google Scholar 

  38. Griesser UJ. The importance of solvates. In: Hilfiker R, editor. Polymorphism in the pharmaceutical industry. Weinheim: Wiley-VCH; 2006. p. 224.

    Google Scholar 

  39. Brown M, Galwey AK, Guarini G. Structures and functions of reaction interfaces developed during solid-state dehydrations. J Thermal Anal. 1997;49:1135–46.

    Article  CAS  Google Scholar 

  40. Chizhik S, Sidel’nikov A. Kinetics of solid state reactions with a positive feedback between the reaction and fracture: 1. A quantitative model for movement of the fracture front. Russ Chem Bull. 1998;47:604–9.

    Article  CAS  Google Scholar 

  41. Khoo JY, Williams D, Heng J. Dehydration kinetics of pharmaceutical hydrate: effects of environmental conditions and crystal forms. Dry Technol. 2010;28:1164–9.

    Article  CAS  Google Scholar 

  42. Patterson J, James M, Forster A, Lancaster R, Butler J, Rades T. The influence of thermal and mechanical preparative techniques on the amorphous state of four poorly soluble compounds. J Pharm Sci. 2005;94:1998–2012.

    Article  PubMed  CAS  Google Scholar 

  43. Gillon A, Feeder N, Davey R, Storey R. Hydration in molecular crystals – a Cambridge Structural Database analysis. Cryst Growth Des. 2003;3:663–73.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kachrimanis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kachrimanis, K., Griesser, U.J. Dehydration Kinetics and Crystal Water Dynamics of Carbamazepine Dihydrate. Pharm Res 29, 1143–1157 (2012). https://doi.org/10.1007/s11095-012-0698-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0698-4

KEY WORDS

Navigation