Skip to main content
Log in

Drug Release Patterns and Cytotoxicity of PEG-poly(aspartate) Block Copolymer Micelles in Cancer Cells

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To test physicochemical and biological properties of PEG-poly(aspartate) [PEG-p(Asp)] block copolymer micelles entrapping doxorubicin hydrochloride (DOX) through ionic interaction.

Methods

PEG-p(Asp) was synthesized from 5 kDa PEG and 20 Asp units. Carboxyl groups of p(Asp) were present as benzyl ester [PEG-p(Asp/Bz)], sodium salt [PEG-p(Asp/Na)] or free acid [PEG-p(Asp/H)]. Block copolymers and DOX were mixed at various ratios to prepare polymer micelles, which were subsequently characterized to determine particle size, drug loading and release patterns, and cytotoxicity against prostate (PC3 and DU145) and lung (A549) cancer cell lines.

Results

PEG-p(Asp/Bz), Na- and H-micelles entrapped 1.1, 56.8 and 40.6 wt.% of DOX, respectively. Na- and H-micelles (<100 nm) showed time-dependent DOX release at pH 7.4, which was accelerated at pH 5.0. Na-micelles were most stable at pH 7.4, retaining 31.8% of initial DOX for 48 h. Cytotoxicity of Na-micelles was 23.2% (A549), 28.5% (PC3) and 45.9% (DU145) more effective than free DOX.

Conclusion

Ionic interaction appeared to entrap DOX efficiently in polymer micelles from PEG-p(Asp) block copolymers. Polymer micelles possessing counter ions (Na) of DOX in the core were the most stable, releasing drugs for prolonged time in a pH-dependent manner, and suppressing cancer cells effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. Lvov YM, Pattekari P, Zhang X, Torchilin V. Converting poorly soluble materials into stable aqueous nanocolloids. Langmuir. 2011;27:1212–7.

    Article  PubMed  CAS  Google Scholar 

  2. Cukierman E, Khan DR. The benefits and challenges associated with the use of drug delivery systems in cancer therapy. Biochem Pharmacol. 2010;80:762–70.

    Article  PubMed  CAS  Google Scholar 

  3. Jain RK. Delivery of molecular and cellular medicine to solid tumors. Adv Drug Deliv Rev. 1997;26:71–90.

    Article  PubMed  CAS  Google Scholar 

  4. Liu J, Xiao Y, Allen C. Polymer-drug compatibility: a guide to the development of delivery systems for the anticancer agent, ellipticine. J Pharm Sci. 2004;93:132–43.

    Article  PubMed  CAS  Google Scholar 

  5. Oberoi HS, Laquer FC, Marky LA, Kabanov AV, Bronich TK. Core cross-linked block ionomer micelles as ph-responsive carriers for cis-diamminedichloroplatinum(ii). J Control Release. 2011;153:64–72.

    Article  PubMed  CAS  Google Scholar 

  6. Ruenraroengsak P, Cook JM, Florence AT. Nanosystem drug targeting: facing up to complex realities. J Control Release. 2010;141:265–76.

    Article  PubMed  CAS  Google Scholar 

  7. Maruyama K. Intracellular targeting delivery of liposomal drugs to solid tumors based on epr effects. Adv Drug Deliv Rev. 2011;63:161–9.

    Article  PubMed  CAS  Google Scholar 

  8. Maeda H. Tumor-selective delivery of macromolecular drugs via the epr effect: background and future prospects. Bioconjugate Chem. 2010;21:797–802.

    Article  CAS  Google Scholar 

  9. Torchilin V. Tumor delivery of macromolecular drugs based on the epr effect. Adv Drug Deliv Rev. 2011;63:131–5.

    Article  PubMed  CAS  Google Scholar 

  10. Blanco E, Hsiao A, Mann Aman P, Landry Matthew G, Meric-Bernstam F, Ferrari M. Nanomedicine in cancer therapy: innovative trends and prospects. Cancer Sci. 2011;102:1247–52.

    Article  PubMed  CAS  Google Scholar 

  11. Matsumura Y, Kataoka K. Preclinical and clinical studies of anticancer agent-incorporating polymer micelles. Cancer Sci. 2009;100:572–9.

    Article  PubMed  CAS  Google Scholar 

  12. Musacchio T, Torchilin Vladimir P. Recent developments in lipid-based pharmaceutical nanocarriers. Front Biosci. 2011;16:1388–412.

    Article  PubMed  CAS  Google Scholar 

  13. Seidlits S, Peppas NA. Star polymers and dendrimers in nanotechnology and drug delivery. Nanotechnol Ther. 2007;317–48.

  14. Wong HL, Li Y, Bendayan R, Rauth MA, Wu XY. Solid lipid nanoparticles for anti-tumor drug delivery. Nanotechnol Cancer Ther. 2007;741–76.

  15. Park K. All nanocarriers are created equal. J Control Release. 2008;130:139.

    Article  PubMed  CAS  Google Scholar 

  16. Chan Juliana M, Valencia Pedro M, Zhang L, Langer R, Farokhzad Omid C. Polymeric nanoparticles for drug delivery. Methods Mol Biol. 2010;624:163–75.

    Article  PubMed  CAS  Google Scholar 

  17. Levy-Nissenbaum E, Radovic-Moreno Aleksandar F, Wang Andrew Z, Langer R, Farokhzad Omid C. Nanotechnology and aptamers: applications in drug delivery. Trends Biotechnol. 2008;26:442–9.

    Article  PubMed  CAS  Google Scholar 

  18. Alexis F, Pridgen Eric M, Langer R, Farokhzad Omid C. Nanoparticle technologies for cancer therapy. Handb Exp Pharmacol. 2010;55–86.

  19. Pirollo KF, Chang EH. Does a targeting ligand influence nanoparticle tumor localization or uptake? Trends Biotechnol. 2008;26:552–8.

    Article  PubMed  CAS  Google Scholar 

  20. Grattoni A, Shen H, Fine D, Ziemys A, Gill JS, Hudson L, et al. Nanochannel technology for constant delivery of chemotherapeutics: beyond metronomic administration. Pharm Res. 2011;28:292–300.

    Article  PubMed  CAS  Google Scholar 

  21. Dang TT, Bratlie KM, Bogatyrev SR, Chen XY, Langer R, Anderson DG. Spatiotemporal effects of a controlled-release anti-inflammatory drug on the cellular dynamics of host response. Biomaterials. 2011;32:4464–70.

    Article  PubMed  CAS  Google Scholar 

  22. Greco F, Vicent MJ, Gee S, Jones AT, Gee J, Nicholson RI, et al. Investigating the mechanism of enhanced cytotoxicity of hpma copolymer-dox-agm in breast cancer cells. J Control Release. 2007;117:28–39.

    Article  PubMed  CAS  Google Scholar 

  23. Murakami M, Cabral H, Matsumoto Y, Wu S, Kano MR, Yamori T, et al. Improving drug potency and efficacy by nanocarrier-mediated subcellular targeting. Sci Transl Med. 2011;3:64ra2.

    Article  PubMed  CAS  Google Scholar 

  24. van Vlerken Lilian E, Duan Z, Little Steven R, Seiden Michael V, Amiji Mansoor M. Augmentation of therapeutic efficacy in drug-resistant tumor models using ceramide coadministration in temporal-controlled polymer-blend nanoparticle delivery systems. AAPS J. 2010;12:171–80.

    Article  PubMed  Google Scholar 

  25. Lee HJ, Ponta A, Bae Y. Polymer nanoassemblies for cancer treatment and imaging. Ther Deliv. 2010;1:803–17.

    Article  CAS  Google Scholar 

  26. Bae Y, Kataoka K. Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. Adv Drug Deliv Rev. 2009;61:768–84.

    Article  PubMed  CAS  Google Scholar 

  27. Yokoyama M. Polymeric micelles as a new drug carrier system and their required considerations for clinical trials. Expert Opin Drug Del. 2010;7:145–58.

    Article  CAS  Google Scholar 

  28. Kataoka K, Kwon GS, Yokoyama M, Okano T, Sakurai Y. Block-copolymer micelles as vehicles for drug delivery. J Control Release. 1993;24:119–32.

    Article  CAS  Google Scholar 

  29. Bae Y, Nishiyama N, Fukushima S, Koyama H, Yasuhiro M, Kataoka K. Preparation and biological characterization of polymeric micelle drug carriers with intracellular ph-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjugate Chem. 2005;16:122–30.

    Article  CAS  Google Scholar 

  30. Bae Y, Nishiyama N, Kataoka K. In vivo antitumor activity of the folate-conjugated ph-sensitive polymeric micelle selectively releasing adriamycin in the intracellular acidic compartments. Bioconjugate Chem. 2007;18:1131–9.

    Article  CAS  Google Scholar 

  31. Bae Y, Alani AWG, Rockich NC, Lai TSZC, Kwon GS. Mixed ph-sensitive polymeric micelles for combination drug delivery. Pharm Res. 2010;27:2421–32.

    Article  PubMed  CAS  Google Scholar 

  32. Alani AWG, Bae Y, Rao DA, Kwon GS. Polymeric micelles for the ph-dependent controlled, continuous low dose release of paclitaxel. Biomaterials. 2010;31:1765–72.

    Article  PubMed  CAS  Google Scholar 

  33. Howard MD, Ponta A, Eckman A, Jay M, Bae Y. Polymer micelles with hydrazone-ester dual linkers for tunable release of dexamethasone. Pharm Res. 2011;28:2435–46.

    Article  PubMed  CAS  Google Scholar 

  34. Ponta A, Bae Y. Peg-poly(amino acid) block copolymer micelles for tunable drug release. Pharm Res. 2010;27:2330–42.

    Article  PubMed  CAS  Google Scholar 

  35. Allen C, Maysinger D, Eisenberg A. Nano-engineering block copolymer aggregates for drug delivery. Colloid Surface B. 1999;16:3–27.

    Article  CAS  Google Scholar 

  36. Yokoyama M, Inoue S, Kataoka K, Yui N, Sakurai Y. Preparation of adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer - a new type of polymeric anticancer agent. Makromol Chem-Rapid. 1987;8:431–5.

    Article  CAS  Google Scholar 

  37. Kwon GS, Yokoyama M, Okano T, Sakurai Y, Kataoka K. Enhanced tumor accumulation and prolonged circulation times of micelle-forming poly(ethylene oxide-aspartate) block copolymer-adriamycin conjugates. J Control Release. 1994;28:334–5.

    Article  Google Scholar 

  38. Yokoyama M, Okano T, Sakurai Y, Kataoka K. Improved synthesis of adriamycin-conjugated poly(ethylene oxide) poly(aspartic acid) block-copolymer and formation of unimodal micellar structure with controlled amount of physically entrapped adriamycin. J Control Release. 1994;32:269–77.

    Article  CAS  Google Scholar 

  39. Kwon GS, Naito M, Yokoyama M, Okano T, Sakurai Y, Kataoka K. Physical entrapment of adriamycin in ab block-copolymer micelles. Pharm Res. 1995;12:192–5.

    Article  PubMed  CAS  Google Scholar 

  40. Kataoka K, Matsumoto T, Yokoyama M, Okano T, Sakurai Y, Fukushima S, et al. Doxorubicin-loaded poly(ethylene glycol)-poly(beta-benzyl-l-aspartate) copolymer micelles: their pharmaceutical characteristics and biological significance. J Control Release. 2000;64:143–53.

    Article  PubMed  CAS  Google Scholar 

  41. Kwon G, Naito M, Yokoyama M, Okano T, Sakurai Y, Kataoka K. Block copolymer micelles for drug delivery: loading and release of doxorubicin. J Control Release. 1997;48:195–201.

    Article  CAS  Google Scholar 

  42. Nishiyama N, Kataoka K. Polymeric micelle drug carrier systems: peg-pasp(dox) and second generation of micellar drugs. Adv Exp Med Biol. 2003;519:155–77.

    Article  PubMed  CAS  Google Scholar 

  43. Kim JO, Sahay G, Kabanov AV, Bronich TK. Polymeric micelles with ionic cores containing biodegradable cross-links for delivery of chemotherapeutic agents. Biomacromolecules. 2010;11:919–26.

    Article  PubMed  CAS  Google Scholar 

  44. Bures P, Peppas NA. Ionic nanoparticulate systems for drug delivery. Nanotechnol Ther. 2007;349–60.

  45. Bontha S, Kabanov AV, Bronich TK. Polymer micelles with cross-linked ionic cores for delivery of anticancer drugs. J Control Release. 2006;114:163–74.

    Article  PubMed  CAS  Google Scholar 

  46. Bae Y, Fukushima S, Harada A, Kataoka K. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: polymeric micelles that are responsive to intracellular ph change. Angew Chem Int Ed. 2003;42:4640–3.

    Article  CAS  Google Scholar 

  47. Urasaki Y, Laco GS, Pourquier P, Takebayashi Y, Kohlhagen G, Gioffre C, et al. Characterization of a novel topoisomerase i mutation from a camptothecin-resistant human prostate cancer cell line. Cancer Res. 2001;61:1964–9.

    PubMed  CAS  Google Scholar 

  48. Robinson BW, Behling KC, Gupta M, Zhang AY, Moore JS, Bantly AD, et al. Abundant anti-apoptotic bcl-2 is a molecular target in leukaemias with t(4;11) translocation. Br J Haematol. 2008;141:827–39.

    Article  PubMed  CAS  Google Scholar 

  49. Pommier Y, Leo E, Zhang H, Marchand C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol. 2010;17:421–33.

    Article  PubMed  CAS  Google Scholar 

  50. Devlin HL, Mack PC, Burich RA, Gumerlock PH, Kung HJ, Mudryj M. deVere White RW. Impairment of the DNA repair and growth arrest pathways by p53r2 silencing enhances DNA damage-induced apoptosis in a p53-dependent manner in prostate cancer cells. Mol Cancer Res. 2008;6:808–18.

    Article  PubMed  CAS  Google Scholar 

  51. Redon CE, Nakamura AJ, Zhang YW, Ji JJ, Bonner WM, Kinders RJ, et al. Histone gammah2ax and poly(adp-ribose) as clinical pharmacodynamic biomarkers. Clin Cancer Res. 2010;16:4532–42.

    Article  PubMed  CAS  Google Scholar 

  52. Shaheen FS, Znojek P, Fisher A, Webster M, Plummer R, Gaughan L, et al. Targeting the DNA double strand break repair machinery in prostate cancer. PLoS One. 2011;6:e20311.

    Article  PubMed  CAS  Google Scholar 

  53. Hayden MS, Ghosh S. Shared principles in nf-kappab signaling. Cell. 2008;132:344–62.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

Authors acknowledge financial support provided by the Kentucky Lung Cancer Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younsoo Bae.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eckman, A.M., Tsakalozou, E., Kang, N.Y. et al. Drug Release Patterns and Cytotoxicity of PEG-poly(aspartate) Block Copolymer Micelles in Cancer Cells. Pharm Res 29, 1755–1767 (2012). https://doi.org/10.1007/s11095-012-0697-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0697-5

KEY WORDS

Navigation