Skip to main content

Advertisement

Log in

Targeted Delivery of Proteins into the Central Nervous System Mediated by Rabies Virus Glycoprotein-Derived Peptide

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Delivery of therapeutic proteins across the blood-brain barrier (BBB) is severely limited by their size and biochemical properties. Here we showed that a 39-amino acid peptide derived from the rabies virus glycoprotein (RDP) was exploited as an efficient protein carrier for brain-targeting delivery.

Methods

Three proteins with different molecular weight and pI, β-galactosidase (β-Gal), luciferase (Luc) and brain-derived neurotrophic factor (BDNF), were fused to RDP and intravenously injected into the mice respectively. The slices of different tissues with X-Gal staining were used to examine whether RDP could deliver β-Gal targeted into the CNS. The time-course relationship of RDP-Luc was studied to confirm the transport efficiency of RDP. The neuroprotective function of RDP-BDNF was examined in mouse experimental stroke to explore the pharmacological effect of RDP fusion protein.

Results

The results showed that the fusion proteins rapidly and specific entered the nerve cells in 15 min, and the t1/2 was about 1 hr. Furthermore, RDP-BDNF fusion protein showed the neuroprotective properties in mouse experimental stroke including reduction of stroke volume and neural deficit.

Conclusions

RDP provides an effective approach for the targeted delivery of biological active proteins into the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. Banks WA. Physiology and pathology of the blood-brain barrier: implications for microbial pathogenesis, drug delivery and neurodegenerative disorders. J Neurovirol. 1999;5(6):538–55.

    Article  PubMed  CAS  Google Scholar 

  2. Nathanson D, Mischel PS. Charting the course across the blood-brain barrier. J Clin Invest. 2011;121(1):31–3.

    Article  PubMed  CAS  Google Scholar 

  3. Pardridge WM. Biopharmaceutical drug targeting to the brain. J Drug Target. 2010;18(3):157–67.

    Article  PubMed  CAS  Google Scholar 

  4. Begley DJ. Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol Ther. 2004;104(1):29–45.

    Article  PubMed  CAS  Google Scholar 

  5. Patel MM, Goyal BR, Bhadada SV, Bhatt JS, Amin AF. Getting into the brain: approaches to enhance brain drug delivery. CNS Drugs. 2009;23(1):35–58.

    Article  PubMed  CAS  Google Scholar 

  6. Spencer BJ, Verma IM. Targeted delivery of proteins across the blood-brain barrier. Proc Natl Acad Sci USA. 2007;104:7594–9.

    Article  PubMed  CAS  Google Scholar 

  7. Pardridge WM. Peptide drug delivery to the brain. New York: Raven; 1991.

    Google Scholar 

  8. Hammarlund-Udenaes M, Fridén M, Syvänen S, Gupta A. On the rate and extent of drug delivery to the brain. Pharm Res. 2008;25(8):1737–50.

    Article  PubMed  CAS  Google Scholar 

  9. Kilic U, Kilic E, Dietz GP, Bähr M. Intravenous TAT-GDNF is protective after focal cerebral ischemia in mice. Stroke. 2003;34(5):1304–10.

    Article  PubMed  Google Scholar 

  10. Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science. 1999;285:1569–72.

    Article  PubMed  CAS  Google Scholar 

  11. Gupta B, Levchenko TS, Torchilin VP. Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Adv Drug Deliv Rev. 2005;57(4):637–51.

    Article  PubMed  CAS  Google Scholar 

  12. Patel LN, Zaro JL, Shen WC. Cell penetrating peptides: intracellular pathways and pharmaceutical perspectives. Pharm Res. 2007;24(11):1977–92.

    Article  PubMed  CAS  Google Scholar 

  13. Grdisa M. The delivery of biologically active (therapeutic) peptides and proteins into cells. Curr Med Chem. 2011;18(9):1373–9.

    Article  PubMed  CAS  Google Scholar 

  14. Fu AL, Li Q, Dong ZH, Huang SJ, Wang YX, Sun MJ. Alternative therapy of Alzheimer’s disease via supplementation with choline acetyltransferase. Neurosci Lett. 2004;368(3):258–62.

    Article  PubMed  CAS  Google Scholar 

  15. Fu AL, Wu SP, Dong ZH, Sun MJ. A novel therapeutic approach to depression via supplement with tyrosine hydroxylase. Biochem Bioph Res Co. 2006;351(1):140–5.

    Article  CAS  Google Scholar 

  16. Wu SP, Fu AL, Wang YX, Yu LP, Jia PY, Li Q, et al. A novel therapeutic approach to 6-OHDA-induced Parkinson’s disease in rats via supplementation of PTD-conjugated tyrosine hydroxylase. Biochem Bioph Res Co. 2006;346(1):1–6.

    Article  CAS  Google Scholar 

  17. Martín I, Teixidó M, Giralt E. Building cell selectivity into CPP-Mediated strategies. Pharm. 2010;3:1456–90.

    Google Scholar 

  18. Toivonen JM, Oliván S, Osta R. Tetanus toxin C-fragment: the courier and the cure? Toxins. 2010;2:2622–44.

    Article  PubMed  CAS  Google Scholar 

  19. Tuffereau C, Benejean J, Alfonso AR, Flamand A, Fishman AC. Neuronal cell surface molecules mediate specific binding to rabies virus glycoprotein expressed by a recombinant baculovirus on the surfaces of lepidopteran cells. J Virol. 1998;72:1085–91.

    PubMed  CAS  Google Scholar 

  20. Tang Q, Orciari LA, Rupprechti CE, Zhao XQ, Li ZG, Yang WS. Sequencing and position analysis of the glycoprotein gene of four Chinese rabies viruses. Virol Sin. 2000;15(1):22–33.

    CAS  Google Scholar 

  21. Tuffereau C, Leblois H, Bénéjean J, Coulon P, Lafay F, Flamand A. Arginine or lysine in position 333 of ERA and CVS glycoprotein is necessary for rabies virulence in adult mice. Virology. 1989;172(1):206–12.

    Article  PubMed  CAS  Google Scholar 

  22. Xiang L, Zhou R, Fu A, Xu X, Huang Y, Hu C. Targeted delivery of large fusion protein into hippocampal neurons by systemic administration. J Drug Target. 2011;19:632–6.

    Article  PubMed  CAS  Google Scholar 

  23. Fu A, Hui EK, Lu JZ, Boado RJ, Pardridge WM. Neuroprotection in stroke in the mouse with intravenous erythropoietin-Trojan horse fusion protein. Brain Res. 2011;1369:203–7.

    Article  PubMed  CAS  Google Scholar 

  24. Cai SR, Xu G, Becker-Hapak M, Ma M, Dowdy SF, McLeod HL. The kinetics and tissue distribution of protein transduction in mice. Eur J Pharm Sci. 2006;27(4):311–9.

    Article  PubMed  CAS  Google Scholar 

  25. Horsburgh MJ, Ingham E, Foster SJ. In Staphylococcus aureus, fur is an interactive regulator with PerR, contributes to virulence, and is necessary for oxidative stress resistance through positive regulation of catalase and iron homeostasis. J Bacteriol. 2001;183:468–75.

    Article  PubMed  CAS  Google Scholar 

  26. Masahira N, Ding L, Takebayashi H, Shimizu K, Ikenaka K, Ono K. Improved preservation of X-gal reaction product for electron microscopy using hydroxypropyl methacrylate. Neurosci Lett. 2005;374:17–20.

    Article  PubMed  CAS  Google Scholar 

  27. Bloquel C, Trollet C, Pradines E, Seguin J, Scherman D, Bureau MF. Optical imaging of luminescence for in vivo quantification of gene electrotransfer in mouse muscle and knee. BMC Biotechnol. 2006;6:16.

    Article  PubMed  CAS  Google Scholar 

  28. Montag C, Schoene-Bake JC, Faber J, Reuter M, Weber B. Genetic variation on the BDNF gene is not associated with differences in white matter tracts in healthy humans measured by tract-based spatial statistics. Genes Brain Behav. 2010;9(8):886–91.

    Article  PubMed  CAS  Google Scholar 

  29. Zhou JP, Feng ZG, Yuan BL, Yu SZ, Li Q, Qu HY, et al. Transduced PTD-BDNF fusion protein protects against beta amyloid peptide-induced learning and memory deficits in mice. Brain Res. 2008;1191:12–9.

    Article  PubMed  CAS  Google Scholar 

  30. Mazarakis ND, Azzouz M, Rohll JB, Ellard FM, Wilkes FJ, Olsen AL, et al. Rabies virus glycoprotein pseudotyping of lentiviral vectors enables retrograde axonal transport and access to the nervous system after peripheral delivery. Hum Mol Genet. 2001;10(19):2109–21.

    Article  PubMed  CAS  Google Scholar 

  31. Benmansour A, Leblois H, Coulon C, Tuffereau C, Gaudin Y, Flamand A, et al. Antigenicity of rabies virus glycoprotein. J Virol. 1991;65:4198–203.

    PubMed  CAS  Google Scholar 

  32. Dani JA, Ji D, Zhou FM. Synaptic plasticity and nicotine addiction. Neuron. 2001;31(3):349–52.

    Article  PubMed  CAS  Google Scholar 

  33. Resende RR, Adhikari A. Cholinergic receptor pathways involved in apoptosis, cell proliferation and neuronal differentiation. Cell Commun Signal. 2009;7:20.

    Article  PubMed  Google Scholar 

  34. Hogg RC, Raggenbass M, Bertrand D. Nicotinic acetylcholine receptors: from structure to brain function. Rev Physiol Biochem Pharmacol. 2003;147:1–46.

    Article  PubMed  CAS  Google Scholar 

  35. Brüggmann D, Lips KS, Pfeil U, Haberberger RV, Kummer W. Multiple nicotinic acetylcholine receptor alpha-subunits are expressed in the arterial system of the rat. Histochem Cell Biol. 2002;118(6):441–7.

    PubMed  Google Scholar 

  36. Brüggmann D, Lips KS, Pfeil U, Haberberger RV, Kummer W. Rat arteries contain multiple nicotinic acetylcholine receptor alpha-subunits. Life Sci. 2003;72(18–19):2095–9.

    Article  PubMed  Google Scholar 

  37. Kumar P, Wu H, McBride JL, Jung KE, Kim MH, Davidson BL, et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature. 2007;448:39–43.

    Article  PubMed  CAS  Google Scholar 

  38. do Hwang W, Son S, Jang J, Youn H, Lee S, Lee D, et al. brain-targeted rabies virus glycoprotein-disulfide linked PEI nanocarrier for delivery of neurogenic microRNA. Biomaterials. 2011;32(21):4968–75.

    Article  CAS  Google Scholar 

  39. Liu Y, Huang R, Han L, Ke W, Shao K, Ye L, et al. Brain-targeting gene delivery and cellular internalization mechanisms for modified rabies virus glycoprotein RVG29 nanoparticles. Biomaterials. 2009;30:4195–202.

    Article  PubMed  CAS  Google Scholar 

  40. Laffray S, Tan K, Dulluc J, Bouali-Benazzouz R, Calver AR, Nagy F, et al. Dissociation and trafficking of rat GABAB receptor heterodimer upon chronic capsaicin stimulation. Eur J Neurosci. 2007;25(5):1402–16.

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

This work is supported by the grants from the Natural Science Foundation of China (31072098), the Doctoral Fund of Ministry of Education of China (20090182120017) and the Fundamental Research Funds for the Central Universities of China (XDGK2009C174).

We are grateful to Miss Lixin Xiang for pcDNA/Lac Z plasmid, to Dr. Ying Bin Yang for pVAX/Luc plasmid, and to Dr. Jian Ping Zhou for pGST-4T/BDNF plasmid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ailing Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, A., Wang, Y., Zhan, L. et al. Targeted Delivery of Proteins into the Central Nervous System Mediated by Rabies Virus Glycoprotein-Derived Peptide. Pharm Res 29, 1562–1569 (2012). https://doi.org/10.1007/s11095-012-0667-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0667-y

KEY WORDS

Navigation