Skip to main content

Advertisement

Log in

Fe3O4-PEI-RITC Magnetic Nanoparticles with Imaging and Gene Transfer Capability: Development of a Tool for Neural Cell Transplantation Therapies

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To develop Fe3O4-PEI-RITC magnetic nanoparticles with multimodal MRI-fluorescence imaging and transfection capability, for use in neural cell replacement therapies.

Methods

The Fe3O4-PEI-RITC MNPs were synthesised through a multi-step chemical grafting procedure: (i) Silanisation of MNPs with 3-iodopropyltrimethoxysilane; (ii) PEI coupling with iodopropyl groups on the MNP surface; and (iii) RITC binding onto the PEI coating. The cell labelling and transfection capabilities of these particles were evaluated in astrocytes derived from primary cultures.

Results

Fe3O4-PEI-RITC MNPs did not exert acute toxic effects in astrocytes (at ≤6 days). Cells showed rapid and extensive particle uptake with up to 100% cellular labelling observed by 24 h. MRI and microscopy studies demonstrate that the particles have potential for use in bimodal MR-fluorescence imaging. Additionally, the particles were capable of delivering plasmids encoding reporter protein (approximately 4 kb) to astrocytes, albeit with low efficiencies.

Conclusions

Multifunctional Fe3O4-PEI-RITC MNPs were successfully prepared using a multi-step synthetic pathway, with the PEI and RITC chemically bound onto the MNP surface. Their combined MR-fluorescence imaging capabilities with additional potential for transfection applications can provide a powerful tool, after further development, for non-invasive cell tracking and gene transfer to neural transplant populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CHN:

carbon, hydrogen, nitrogen

CNS:

central nervous system

DAPI:

4′,6-Diamidino-2-phenylindole

DLS:

dynamic Light Scattering

FITC:

fluorescein isothiocyanate

FTIR spectroscopy:

Fourier transform infrared spectroscopy

GFAP:

glial fibrillary acidic protein

GFP:

green fluorescent protein

MCT:

multiple comparison test

MNP:

magnetic nanoparticle

MRI:

magnetic resonance imaging

PBS:

phosphate-buffered saline

PEI:

polyethyleneimine

PVA:

polyvinyl alcohol

RITC:

rhodamine B isothiocyanate

RT:

room temperature

TEM:

transmission electron microscopy

TGA:

thermogravimetric analysis

XRD:

X-ray diffraction

REFERENCES

  1. Gögel S, Gubernator M, Minger SL. Progress and prospects: stem cells and neurological diseases. Gene Ther. 2011;18(1):1–6.

    Article  PubMed  Google Scholar 

  2. Chari DM. Remyelination in multiple sclerosis. Int Rev Neurobiol. 2007;79:589–620.

    Article  PubMed  CAS  Google Scholar 

  3. Herranz F, Almarza E, Rodríguez I, Salinas B, Rosell Y, Desco M, Bulte JW, Ruiz-Cabello J. The application of nanoparticles in gene therapy and magnetic resonance imaging. Microsc Res Tech. 2011;74(7):577–91.

    Article  PubMed  CAS  Google Scholar 

  4. Gleave JA, Valliant JF, Doering LC. 99mTc-based imaging of transplanted neural stem cells and progenitor cells. J Nucl Med Tech. 2011;39(2):114–20.

    Article  Google Scholar 

  5. Chari DM, Blakemore WF. New insights into remyelination failure in multiple sclerosis: implications for glial cell transplantation. Mult Scler. 2002;8(4):271–7.

    Article  PubMed  CAS  Google Scholar 

  6. Ruff CA, Wilcox JT, Fehlings MG. Cell-based transplantation strategies to promote plasticity following spinal cord injury. Exp Neurol. 2011. doi:10.1016/j.expneurol.2011.02.010.

  7. Pickard MR, Barraud P, Chari DM. The transfection of multipotent neural precursor/stem cell transplant populations with magnetic nanoparticles. Biomaterials. 2010;32(9):2274–84.

    Article  PubMed  Google Scholar 

  8. Jenkins SI, Pickard MR, Granger N, Chari DM. Magnetic nanoparticle-mediated gene transfer to oligodendrocyte precursor cell transplant populations is enhanced by magnetofection strategies. ACS Nano. 2011;5(8):6527–38.

    Article  PubMed  CAS  Google Scholar 

  9. McBain SC, Yiu HHP, Dobson J. Magnetic nanoparticles for gene and drug delivery. Int J Nanomed. 2008;3(2):169–80.

    CAS  Google Scholar 

  10. Hyeon T. Chemical synthesis of magnetic nanoparticles. Chem Commun. 2003;8:927–34.

    Article  Google Scholar 

  11. Berry CC, Curtis ASG. Functionalisation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys. 2003;36(13):R198–206.

    Article  CAS  Google Scholar 

  12. Yiu HHP, McBain SC, Lethbridge ZAD, Lees MR, Dobson J. Preparation and characterization of polyethylenimine-coated Fe3O4-MCM-48 nanocomposite particles as a novel agent for magnet-assisted transfection. J Biomed Mater Res A. 2010;92A(1):386–92.

    Article  CAS  Google Scholar 

  13. Veiseh O, Sun C, Fang C, Bhattarai N, Gunn J, Kievit F, Du K, Pullar B, Lee D, Ellenbogen RG, Olson J, Zhang MQ. Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood-brain barrier. Cancer Res. 2009;69(15):6200–7.

    Article  PubMed  CAS  Google Scholar 

  14. Olariu CI, Yiu HHP, Bouffier L, Nedjadi T, Costello E, Williams SR, Halloran CM, Rosseinsky MJ. Multifunctional Fe3O4 nanoparticles for targeted bi-modal imaging of pancreatic cancer. J Mater Chem. 2011;21(34):12650–9.

    Article  CAS  Google Scholar 

  15. Lu AH, Salabas EL, Schuth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Intl Ed. 2007;46(8):1222–44.

    Article  CAS  Google Scholar 

  16. Berman SMC, Walczak P, Bulte JWM. Tracking stem cells using magnetic nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2011;3(4):343–55.

    Article  CAS  Google Scholar 

  17. Pickard MR, Jenkins SI, Koller CJ, Furness DN, Chari DM. Magnetic nanoparticle labeling of astrocytes derived for neural transplantation. Tissue Eng C Meth. 2011;17(1):89–99.

    Article  CAS  Google Scholar 

  18. Pickard M, Chari D. Enhancement of magnetic nanoparticle-mediated gene transfer to astrocytes by ‘magnetofection’: effects of static and oscillating fields. Nanomedicine. 2010;5(2):217–32.

    Article  PubMed  CAS  Google Scholar 

  19. Nishida K, Tanaka N, Nakanishi K, Kamei N, Hamasaki T, Yanada S, Mochizuki Y, Ochi M. Magnetic targeting of bone marrow stromal cells into spinal cord: through cerebrospinal fluid. Neuroreport. 2006;17(12):1269–72.

    Article  PubMed  Google Scholar 

  20. Veiseh O, Kievit FM, Fang C, Mu N, Jana S, Leung MC, Mok H, Ellenbogen RG, Park JO, Zhang MQ. Chlorotoxin bound magnetic nanovector tailored for cancer cell targeting, imaging, and siRNA delivery. Biomaterials. 2010;31(31):8032–42.

    Article  PubMed  CAS  Google Scholar 

  21. McBain SC, Yiu HHP, El Haj A, Dobson J. Polyethyleneimine functionalized iron oxide nanoparticles as agents for DNA delivery and transfection. J Mater Chem. 2007;17(24):2561–5.

    Article  CAS  Google Scholar 

  22. Hennig J, Nauerth A, Friedburg H. RARE imaging: a fast imaging method for clinical MR. Magn Reson Med. 1986;3(6):823–33.

    Article  PubMed  CAS  Google Scholar 

  23. Hall JB, Dobrovolskaia MA, Patri AK, McNeil SE. Characterization of nanoparticles for therapeutics. Nanomedicine. 2007;2(6):789–803.

    Article  PubMed  CAS  Google Scholar 

  24. Steitz B, Hofmann H, Kamau SW, Hassa PO, Hottiger MO, von Rechenberg B, Hofmann-Amtenbrink M, Petri-Fink A. Characterization of PEI-coated superparamagnetic iron oxide nanoparticles for transfection: size distribution, colloidal properties and DNA interaction. J Magn Magn Mater. 2007;311(1):300–5.

    Article  CAS  Google Scholar 

  25. Chorny M, Polyak B, Alferiev IS, Walsh K, Friedman G, Levy RJ. Magnetically driven plasmid DNA delivery with biodegradable polymeric nanoparticles. FASEB J. 2007;21(10):2510–9.

    Article  PubMed  CAS  Google Scholar 

  26. Petri-Finka A, Steitza B, Finka A, Salaklanga J, Hofmann H. Effect of cell media on polymer coated superparamagnetic iron oxide nanoparticles (SPIONs): colloidal stability, cytotoxicity, and cellular uptake studies. Eur J Pharm Biopharm. 2008;68(1):129–37.

    Article  Google Scholar 

  27. Arsianti M, Lim M, Marquis CP, Amal R. Assembly of polyethylenimine-based magnetic iron oxide vectors: insights into gene delivery. Langmuir. 2010;26(10):7314–26.

    Article  PubMed  CAS  Google Scholar 

  28. Ang D, Nguyen QV, Kayal S, Preiser PR, Rawat RS, Ramanujan RV. Insights into the mechanism of magnetic particle assisted gene delivery. Acta Biomaterialia. 2011;7(3):1319–26.

    Article  PubMed  CAS  Google Scholar 

  29. Godbey WT, Wu KK, Mikos AG. Size matters: molecular weight affects the efficiency of poly(ethylenimine) as a gene delivery vehicle. J Biomed Mater Res. 1999;45(3):268–75.

    Article  PubMed  CAS  Google Scholar 

  30. Kobbert C, Apps R, Bechmann I, Lanciego JL, Mey J, Thanos S. Current concepts in neuroanatomical tracing. Prog Neurobiol. 2000;62(4):327–51.

    Article  PubMed  CAS  Google Scholar 

  31. Ma O, Lavertu M, Sun J, Nguyen S, Buschmann MD, Winnik FM, Hoemann CD. Precise derivatization of structurally distinct chitosans with rhodamine B isothiocyanate. Carbohydr Polym. 2008;72(4):616–24.

    Article  CAS  Google Scholar 

  32. Can K, Ozmen M, Ersoz M. Immobilization of albumin on aminosilane modified superparamagnetic magnetite nanoparticles and its characterization. Colloid Surf B Biointerfaces. 2009;71(1):154–9.

    Article  CAS  Google Scholar 

  33. Murray P, Palona I, Yiu HHP, Olariu CI, Rosseinsky MJ. Unpublished results.

  34. Lerones C, Mariscal A, Carnero M, Garcia-Rodriguez A, Fernandez-Crehuet J. Assessing the residual antibacterial activity of clinical materials disinfected with glutaraldehyde, o-phthalaldehyde, hydrogen peroxide or 2-bromo-2-nitro-1,3-propanediol by means of a bacterial toxicity assay. Clin Microbiol Infect. 2004;10(11):984–9.

    Article  PubMed  CAS  Google Scholar 

  35. Pattnaik G, Rama Raju KS, Heeralal B, Ali S. Nanovehicles: an efficient carrier for active molecules for entry into the cell. Int J Pharm Sci Rev Res. 2010;4(3):3.

    Google Scholar 

  36. Yiu HHP, Bouffier L, Boldrin P, Long J, Claridge JB, Rosseinsky MJ. Direct grafting of amine groups onto iron(II,III) oxide nanoparticles to generate a positively charged three-dimensional coating–I: DNA binding through electrostatic interaction. submitted.

  37. Scherer F, Anton M, Schillinger U, Henkel J, Bergemann C, Kruger A, Gansbacher B, Plank C. Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther. 2002;9(2):102–9.

    Article  PubMed  CAS  Google Scholar 

  38. Sapet C, Laurent N, Le Gourrierec L, Augier S, Zelphati O. In vitro and in vivo magnetofection (TM): a move towards gene therapy. Ann Biol Clin. 2010;68(2):133–42.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

DMC is supported by a New Investigator Award from the British Biotechnology and Biological Sciences Research Council. The authors acknowledge EPSRC (EP/C511794) for financial support. We thank Dr. James Long (IOTA Nanosolutions) for the zeta potential measurements and Dr. Laurent Bouffier (now at Université Bordeaux) for his assistance with FTIR spectroscopy and Ms Karen Davies who performed the MRI measurements at the University of Manchester.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Divya M. Chari or Matthew J. Rosseinsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yiu, H.H.P., Pickard, M.R., Olariu, C.I. et al. Fe3O4-PEI-RITC Magnetic Nanoparticles with Imaging and Gene Transfer Capability: Development of a Tool for Neural Cell Transplantation Therapies. Pharm Res 29, 1328–1343 (2012). https://doi.org/10.1007/s11095-011-0632-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0632-1

KEY WORDS

Navigation