Skip to main content

Advertisement

Log in

Dimeric Cationic Amphiphilic Polyproline Helices for Mitochondrial Targeting

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Efficient delivery of therapeutic biopolymers across cell membranes remains a daunting challenge. The development of cell-penetrating peptides (CPPs) has been useful; however, many CPPs are found trapped within endosomes, limiting their use as delivery agents. We optimize a class of CPPs, cationic amphiphilic polyproline helices (CAPHs), for direct transport into cells with mitochondrial localization through dimerization.

Methods

The CAPH P11LRR used for this study has been found to enter cells by two distinct pathways: an endocytotic pathway was favored at low concentrations; internalization by direct transport was observed at higher concentrations. CAPH was dimerized to probe if direct transport within cells may be enhanced through increased association of CAPH with the membrane and through the association of individual peptides within the membrane.

Results

The dimerization of the CAPH was found to significantly increase cellular uptake over its monomeric counterpart, with a concomitant lowering of the concentration threshold favoring direct transport. Evidence for direct transport within cells and mitochondrial localization was observed.

Conclusions

CAPH cellular uptake efficiency can be significantly enhanced through peptide dimerization while favoring cell entry via direct transport at low concentration with low cell toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CAPH:

cationic amphiphilic polyproline helix

CPP:

cell-penetrating peptide

FBS:

fetal bovine serum

FCCP:

carbonylcyanide p-trifluoromethoxyphenylhydrazone

FL:

fluorescein

Fmoc:

9-fluorenylmethyloxycarbonyl

HATU:

N,N,N',N'-Tetramethyl-O-(7-azabenzotriazol-1-yl)uranium hexafluorophosphate

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NHS-FL:

5-(and 6)-carboxyfluorescein, succinimidyl ester

PBS:

phosphate-buffered saline

REFERENCES

  1. Stewart KM, Horton KL, Kelley SO. Cell-penetrating peptides as delivery vehicles for biology and medicine. Org Biomol Chem. 2008;6(13):2242–55.

    Article  PubMed  CAS  Google Scholar 

  2. Fillon YA, Anderson JP, Chmielewski J. Cell penetrating agents based on a polyproline helix scaffold. J Am Chem Soc. 2005;127(33):11798–803.

    Article  PubMed  CAS  Google Scholar 

  3. Potocky TB, Menon AK, Gellman SH. Effects of conformational stability and geometry of guanidinium display on cell entry by beta-peptides. J Am Chem Soc. 2005;127(11):3686–7.

    Article  PubMed  CAS  Google Scholar 

  4. Geisler I, Chmielewski J. Cationic amphiphilic polyproline helices: side-chain variations and cell-specific internalization. Chem Biol Drug Des. 2009;73(1):39–45.

    Article  PubMed  CAS  Google Scholar 

  5. Derossi D, Calvet S, Trembleau A, Brunissen A, Chassaing G, Prochiantz A. Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J Biol Chem. 1996;271(30):18188–93.

    Article  PubMed  CAS  Google Scholar 

  6. Morris MC, Depollier J, Mery J, Heitz F, Divita G. A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat Biotechnol. 2001;19(12):1173–6.

    Article  PubMed  CAS  Google Scholar 

  7. Pujals S, Fernandez-Carneado J, Lopez-Iglesias C, Kogan MJ, Giralt E. Mechanistic aspects of CPP-mediated intracellular drug delivery: relevance of CPP self-assembly. Biochim Biophys Acta. 2006;1758(3):264–79.

    Article  PubMed  CAS  Google Scholar 

  8. Fischer PM, Zhelev NZ, Wang S, Melville JE, Fahraeus R, Lane DP. Structure-activity relationship of truncated and substituted analogues of the intracellular delivery vector Penetratin. J Pept Res. 2000;55(2):163–72.

    Article  PubMed  CAS  Google Scholar 

  9. Morris MC, Vidal P, Chaloin L, Heitz F, Divita G. A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids Res. 1997;25(14):2730–6.

    Article  PubMed  CAS  Google Scholar 

  10. Pujals S, Fernandez-Carneado J, Ludevid MD, Giralt E. D-SAP: a new, noncytotoxic, and fully protease resistant cell-penetrating peptide. ChemMedChem. 2008;3(2):296–301.

    Article  PubMed  CAS  Google Scholar 

  11. Jones S, Martel C, Belzacq-Casagrande AS, Brenner C, Howl J. Mitoparan and target-selective chimeric analogues: membrane translocation and intracellular redistribution induces mitochondrial apoptosis. Biochim Biophys Acta. 2008;1783(5):849–63.

    Article  PubMed  CAS  Google Scholar 

  12. Li L, Geisler I, Chmielewski J, Cheng JX. Cationic amphiphilic polyproline helix P11LRR targets intracellular mitochondria. J Control Release. 2009;142(2):259–66.

    Article  PubMed  Google Scholar 

  13. Snyder EL, Dowdy SF. Cell penetrating peptides in drug delivery. Pharm Res. 2004;21(3):389–93.

    Article  PubMed  CAS  Google Scholar 

  14. Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, et al. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol. 2000;18(4):410–4.

    Article  PubMed  CAS  Google Scholar 

  15. Lundberg P, Langel U. A brief introduction to cell-penetrating peptides. J Mol Recognit. 2003;16(5):227–33.

    Article  PubMed  CAS  Google Scholar 

  16. Lindgren M, Hallbrink M, Prochiantz A, Langel U. Cell-penetrating peptides. Trends Pharmacol Sci. 2000;21(3):99–103.

    Article  PubMed  CAS  Google Scholar 

  17. Ragin AD, Morgan RA, Chmielewski J. Cellular import mediated by nuclear localization signal Peptide sequences. Chem Biol. 2002;9(8):943–8.

    Article  PubMed  CAS  Google Scholar 

  18. Rothbard JB, Garlington S, Lin Q, Kirschberg T, Kreider E, McGrane PL, et al. Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation. Nat Med. 2000;6(11):1253–7.

    Article  PubMed  CAS  Google Scholar 

  19. Umezawa N, Gelman MA, Haigis MC, Raines RT, Gellman SH. Translocation of a beta-peptide across cell membranes. J Am Chem Soc. 2002;124(3):368–9.

    Article  PubMed  CAS  Google Scholar 

  20. Wender PA, Mitchell DJ, Pattabiraman K, Pelkey ET, Steinman L, Rothbard JB. The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci U S A. 2000;97(24):13003–8.

    Article  PubMed  CAS  Google Scholar 

  21. Singh D, Kiarash R, Kawamura K, LaCasse EC, Gariepy J. Penetration and intracellular routing of nucleus-directed peptide-based shuttles (loligomers) in eukaryotic cells. Biochemistry. 1998;37(17):5798–809.

    Article  PubMed  CAS  Google Scholar 

  22. Wender PA, Rothbard JB, Jessop TC, Kreider EL, Wylie BL. Oligocarbamate molecular transporters: design, synthesis, and biological evaluation of a new class of transporters for drug delivery. J Am Chem Soc. 2002;124(45):13382–3.

    Article  PubMed  CAS  Google Scholar 

  23. Zhou P, Wang M, Du L, Fisher GW, Waggoner A, Ly DH. Novel binding and efficient cellular uptake of guanidine-based peptide nucleic acids (GPNA). J Am Chem Soc. 2003;125(23):6878–9.

    Article  PubMed  CAS  Google Scholar 

  24. Geisler I, Chmielewski J. Probing length effects and mechanism of cell penetrating agents mounted on a polyproline helix scaffold. Bioorg Med Chem Lett. 2007;17(10):2765–8.

    Article  PubMed  CAS  Google Scholar 

  25. Farrera-Sinfreu J, Giralt E, Castel S, Albericio F, Royo M. Cell-penetrating cis-gamma-amino-l-proline-derived peptides. J Am Chem Soc. 2005;127(26):9459–68.

    Article  PubMed  CAS  Google Scholar 

  26. Torchilin VP. Tat peptide-mediated intracellular delivery of pharmaceutical nanocarriers. Adv Drug Deliv Rev. 2008;60(4–5):548–58.

    Article  PubMed  CAS  Google Scholar 

  27. Gazit E, Lee WJ, Brey PT, Shai Y. Mode of action of the antibacterial cecropin B2: a spectrofluorometric study. Biochemistry. 1994;33(35):10681–92.

    Article  PubMed  CAS  Google Scholar 

  28. Matsuzaki K, Murase O, Fujii N, Miyajima K. An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry. 1996;35(35):11361–8.

    Article  PubMed  CAS  Google Scholar 

  29. Horobin RW, Trapp S, Weissig V. Mitochondriotropics: a review of their mode of action, and their applications for drug and DNA delivery to mammalian mitochondria. J Control Release. 2007;121(3):125–36.

    Article  PubMed  CAS  Google Scholar 

  30. Maiti KK, Lee WS, Takeuchi T, Watkins C, Fretz M, Kim DC, et al. Guanidine-containing molecular transporters: sorbitol-based transporters show high intracellular selectivity toward mitochondria. Angew Chem Int Ed Engl. 2007;46(31):5880–4.

    Article  PubMed  CAS  Google Scholar 

  31. Fernandez-Carneado J, Van Gool M, Martos V, Castel S, Prados P, de Mendoza J, et al. Highly efficient, nonpeptidic oligoguanidinium vectors that selectively internalize into mitochondria. J Am Chem Soc. 2005;127(3):869–74.

    Article  PubMed  CAS  Google Scholar 

  32. Rosania GR. Supertargeted chemistry: identifying relationships between molecular structures and their sub-cellular distribution. Curr Top Med Chem. 2003;3(6):659–85.

    Article  PubMed  CAS  Google Scholar 

  33. Rosania GR, Lee JW, Ding L, Yoon HS, Chang YT. Combinatorial approach to organelle-targeted fluorescent library based on the styryl scaffold. J Am Chem Soc. 2003;125(5):1130–1.

    Article  PubMed  CAS  Google Scholar 

  34. Johnson JR, Jiang H, Smith BD. Zinc(II)-coordinated oligotyrosine: a new class of cell penetrating peptide. Bioconjug Chem. 2008;19(5):1033–9.

    Article  PubMed  CAS  Google Scholar 

  35. Rudolph C, Plank C, Lausier J, Schillinger U, Muller RH, Rosenecker J. Oligomers of the arginine-rich motif of the HIV-1 TAT protein are capable of transferring plasmid DNA into cells. J Biol Chem. 2003;278(13):11411–8.

    Article  PubMed  CAS  Google Scholar 

  36. Park SH, Doh J, Park SI, Lim JY, Kim SM, Youn JI, et al. Branched oligomerization of cell-permeable peptides markedly enhances the transduction efficiency of adenovirus into mesenchymal stem cells. Gene Ther. 2010;17(8):1052–61.

    Article  PubMed  CAS  Google Scholar 

  37. Kawamura KS, Sung M, Bolewska-Pedyczak E, Gariepy J. Probing the impact of valency on the routing of arginine-rich peptides into eukaryotic cells. Biochemistry. 2006;45(4):1116–27.

    Article  PubMed  CAS  Google Scholar 

  38. Nishihara M, Perret F, Takeuchi T, Futaki S, Lazar AN, Coleman AW, et al. Arginine magic with new counterions up the sleeve. Org Biomol Chem. 2005;3(9):1659–69.

    Article  PubMed  CAS  Google Scholar 

  39. Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol. 2005;3(3):238–50.

    Article  PubMed  CAS  Google Scholar 

  40. Mitchell DJ, Kim DT, Steinman L, Fathman CG, Rothbard JB. Polyarginine enters cells more efficiently than other polycationic homopolymers. J Pept Res. 2000;56(5):318–25.

    Article  PubMed  CAS  Google Scholar 

  41. Yamashiro DJ, Maxfield FR. Acidification of morphologically distinct endosomes in mutant and wild-type Chinese hamster ovary cells. J Cell Biol. 1987;105(6 Pt 1):2723–33.

    Article  PubMed  CAS  Google Scholar 

  42. Magzoub M, Pramanik A, Graslund A. Modeling the endosomal escape of cell-penetrating peptides: transmembrane pH gradient driven translocation across phospholipid bilayers. Biochemistry. 2005;44(45):14890–7.

    Article  PubMed  CAS  Google Scholar 

  43. Horton KL, Stewart KM, Fonseca SB, Guo Q, Kelley SO. Mitochondria-penetrating peptides. Chem Biol. 2008;15(4):375–82.

    Article  PubMed  CAS  Google Scholar 

  44. Di Virgilio F, Lew PD, Andersson T, Pozzan T. Plasma membrane potential modulates chemotactic peptide-stimulated cytosolic free Ca2+ changes in human neutrophils. J Biol Chem. 1987;262(10):4574–9.

    PubMed  Google Scholar 

  45. Ross MF, Da Ros T, Blaikie FH, Prime TA, Porteous CM, Severina II, et al. Accumulation of lipophilic dications by mitochondria and cells. Biochem J. 2006;400(1):199–208.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Chmielewski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 245 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geisler, I.M., Chmielewski, J. Dimeric Cationic Amphiphilic Polyproline Helices for Mitochondrial Targeting. Pharm Res 28, 2797–2807 (2011). https://doi.org/10.1007/s11095-011-0493-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0493-7

KEY WORDS

Navigation