Skip to main content

Advertisement

Log in

Using pH Abnormalities in Diseased Skin to Trigger and Target Topical Therapy

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The pH discrepancy between healthy and atopic dermatitis skin was identified as a site-specific trigger for delivering hydrocortisone from microcapsules.

Methods

Using Eudragit L100, a pH-responsive polymer which dissolves at pH 6, hydrocortisone-loaded microparticles were produced by oil-in-oil microencapsulation or spray drying. Release and permeation of hydrocortisone from microparticles alone or in gels was assessed, and preliminary stability data was determined.

Results

Drug release from microparticles was pH-dependent, though the particles produced by spray drying also gave significant non-pH-dependent burst release, resulting from their porous nature or from drug enrichment on the surface of these particles. This pH-responsive release was maintained upon incorporation of the oil-in-oil microparticles into Carbopol- and HPMC-based gel formulations. In vitro studies showed 4- to 5-fold higher drug permeation through porcine skin from the gels at pH 7 compared to pH 5.

Conclusions

Permeation studies showed that the oil-in-oil-generated particles deliver essentially no drug at normal (intact) skin pH (5.0–5.5) but that delivery can be triggered and targeted to atopic dermatitis skin where the pH is elevated. The incorporation of these microparticles into Carbopol- and HPMC-based aqueous gel formulations demonstrated good stability and pH-responsive permeation into porcine skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. Hengge UR, Ruzicka T, Schwartz RA, Cork MJ. Adverse effects of topical glucocorticosteroids. J Am Acad Dermatol. 2006;54(1):1.

    Article  PubMed  Google Scholar 

  2. Ohman EM, Rogers S, Meenan FO, McKenna TJ. Adrenal suppression following low-dose topical clobetasol propionate. J R Soc Med. 1987;80(7):422–4.

    PubMed  CAS  Google Scholar 

  3. Schäcke H, Schottelius A, Döcke W-D, Strehlke P, Jaroch S, Schmees N, et al. Dissociation of transactivation from transrepression by a selective glucocorticoid receptor agonist leads to separation of therapeutic effects from side effects. PNAS. 2004;101(1):227–32.

    Article  PubMed  Google Scholar 

  4. Fluhr JW, Elias PM. Stratum corneum pH: formation and function of the “acid mantle”. Exogenous Dermatol. 2002;1:163–75.

    Article  CAS  Google Scholar 

  5. Eberlein-König B, Schafer T, Huss-Marp J, Darsow U, Mohrenschlager M, Herbert O, et al. Skin surface pH, stratum corneum hydration, trans-epidermal water loss and skin roughness related to atopic eczema and skin dryness in a population of primary school children. Acta Derm Venereol. 2000;80:188–91.

    Article  PubMed  Google Scholar 

  6. Schmid-Wendtner MH, Korting HC. The pH of the skin surface and its impact on the barrier function. Skin Pharmacol Physiol. 2006;19(6):296–302.

    Article  PubMed  Google Scholar 

  7. Sparavigna A, Setaro M, Gualandri V. Cutaneous pH in children affected by atopic dermatitis and in healthy children: a multicenter study. Skin Res Technol. 1999;5(4):221–7.

    Article  Google Scholar 

  8. Chikakane K, Takahashi H. Measurement of skin pH and its significance in cutaneous diseases. Clin Dermatol. 1995;13(4):299–306.

    Article  PubMed  CAS  Google Scholar 

  9. Anderson D. The acid-base balance of the skin. Br J Dermatol. 1951;63:283–96.

    Article  PubMed  CAS  Google Scholar 

  10. Rizi K, Green RJ, Khutoryanskaya O, Donaldson M, Williams AC. Mechanisms of burst release from pH-responsive polymeric microparticles. J Pharm Pharmacol. 2010:In Press.

  11. Rizi K, Green RJ, Donaldson M, Williams AC. Production of pH-responsive microparticles by spray drying: Investigation of experimental parameter effects on morphological and release properties. J Pharm Sci. 2010;100(2):566–79.

    Article  PubMed  Google Scholar 

  12. Kendall RA, Alhnan MA, Nilkumhang S, Murdan S, Basit AW. Fabrication and in vivo evaluation of highly pH-responsive acrylic microparticles for targeted gastrointestinal delivery. Eur J Pharm Sci. 2009;37(3–4):284–90.

    Article  PubMed  CAS  Google Scholar 

  13. Jacobi U, Kaiser M, Toll R, Mangelsdorf S, Audring H, Otberg N, et al. Porcine ear skin: an in vitro model for human skin. Skin Res Tech. 2007;13:19–24.

    Article  Google Scholar 

  14. Muhammad F, Brooks JD, Riviere JE. Comparative mixture effects of JP(100) additives on the dermal absorption and disposition of jet fuel hydrocarbons in different membrane model systems. Toxicol Lett. 2004;150:351–65.

    Article  PubMed  CAS  Google Scholar 

  15. French DL, Himmelstein KJ, Mauger JW. Physicochemical aspects of controlled release of substituted benzoic and naphthoic acids from Carbopol® gels. J Control Release. 1995;37(3):281–9.

    Article  CAS  Google Scholar 

  16. Salama R, Hoe S, Chan H-K, Traini D, Young PM. Preparation and characterisation of controlled release co-spray dried drug-polymer microparticles for inhalation 1: influence of polymer concentration on physical and in vitro characteristics. Eur J Pharm Biopharm. 2008;69(2):486–95.

    Article  PubMed  CAS  Google Scholar 

  17. Klee SK, Farwick M, Lersch P. Triggered release of sensitive active ingredients upon response to the skin’s natural pH. Colloid Surf Physicochem Eng Aspect. 2009;338(1–3):162–6.

    Article  CAS  Google Scholar 

  18. Alvarez-Roman R, Barre G, Guy RH, Fessi H. Biodegradable polymer nanocapsules containing a sunscreen agent: preparation and photoprotection. Eur J Pharm Biopharm. 2001;52:191–5.

    Article  PubMed  CAS  Google Scholar 

  19. Jenning V, Gysler A, Schafer-Korting M, Gohla S. Vitamin A loaded solid lipid nanoparticles for topical use:occlusive properties and drug targeting to the upper skin. Eur J Pharm Biopharm. 2000;49:211–8.

    Article  PubMed  CAS  Google Scholar 

  20. Alvarez-Roman R, Naik A, Kalia YN, Guy RH, Fessi H. Skin penetration and distribution of polymeric nanoparticles. J Control Release. 2004;99(1):53.

    Article  PubMed  CAS  Google Scholar 

  21. Zhao Y, Brown MB, Jones SA. Pharmaceutical foams: are they the answer to the dilemma of topical nanoparticles? Nanomed Nanotechnol Biol Med. 2010;6(2):227–36.

    Article  CAS  Google Scholar 

  22. Knorr F, Lademann J, Patzelt A, Sterry W, Blume-Peytavi U, Vogt A. Follicular transport route—Research progress and future perspectives. Eur J Pharm Biopharm. 2008;71(2):173–80.

    Article  PubMed  Google Scholar 

  23. Lademann J, Richter H, Teichmann A, Otberg N, Blume-Peytavi U, Luengo J, et al. Nanoparticles—An efficient carrier for drug delivery into the hair follicles. Eur J Pharm Biopharm. 2007;66(2):159.

    Article  PubMed  CAS  Google Scholar 

  24. Flynn GL. Comparision between in vivo techniques. Acta Pharm Suec. 1983;20:54–9.

    Google Scholar 

  25. Poulsen BJ, Flynn GL. In vitro methods to study dermal delivery and percutaneous absorption. In: Bronaugh RL, Maibach HI, editors. Percutaneous absorption: mechanism, absorption and drug delivery. New York: Marcel Dekker; 1985. p. 431–59.

    Google Scholar 

  26. Salama RO, Traini D, Chan H-K, Young PM. Preparation and characterisation of controlled release co-spray dried drug-polymer microparticles for inhalation 2: evaluation of in vitro release profiling methodologies for controlled release respiratory aerosols. Eur J Pharm Biopharm. 2008;70(1):145–52.

    Article  PubMed  CAS  Google Scholar 

  27. British National Formulary. 59 ed: British Medical Association & Royal Pharmaceutical Society of Great Britain; March 2010.

  28. Barry BW. Dermatological formulations:percutaneous absorption. 1st ed. New York: Marcel Dekker Inc; 1993.

    Google Scholar 

  29. Stankler L. Diseases of the skin. Br Med J. 1974;1:27–9.

    Article  Google Scholar 

  30. Guo J-H. Carbopol polymers for pharmaceutical drug delivery applications. Drug Deliv Technol. 2003.

  31. Labanda J, Marco P, Llorens J. Rheological model to predict the thixotropic behaviour of colloidal dispersions. Colloid Surf Physicochem Eng Aspect. 2004;249(1–3):123–6.

    Article  CAS  Google Scholar 

  32. Glavas-Dodov M, Goracinova K, Mladenovska K, Fredro-Kumbaradzi E. Release profile of lidocaine HCl from topical liposomal gel formulation. Int J Pharm. 2002;242(1–2):381–4.

    Article  PubMed  CAS  Google Scholar 

  33. Lu G, Jun HW. Diffusion studies of methotrexate in Carbopol and Poloxamer gels. Int J Pharm. 1998;160(1):1–9.

    Article  CAS  Google Scholar 

  34. Shin S-C, Cho C-W, Yang K-H. Development of lidocaine gels for enhanced local anesthetic action. Int J Pharm. 2004;287(1–2):73–8.

    Article  PubMed  CAS  Google Scholar 

  35. Dolan MM, Steelman RL, Tumilowicz RR. Carbopol 934: an improved suspending agent for insoluble test compounds. Toxicol Appl Pharmacol. 1960;2(3):331–7.

    Article  PubMed  CAS  Google Scholar 

  36. Meyer RJ, Cohen L. The rheology of natural and synthetic hydrophilic polymer solutions as related to suspending ability. J Soc Cosmet Chem. 1959;10:143–54.

    CAS  Google Scholar 

  37. Berney BM, Deasy PB. Evaluation of carbopol 934 as a suspending agent for sulphaoimidine suspensions. Int J Pharm. 1979;3(2–3):73–80.

    Article  CAS  Google Scholar 

  38. El-Kattan AF, Asbill CS, Michniak BB. The effect of terpene enhancer lipophilicity on the percutaneous permeation of hydrocortisone formulated in HPMC gel systems. Int J Pharm. 2000;198(2):179–89.

    Article  PubMed  CAS  Google Scholar 

  39. Formulating hydroalcoholic gels with Carbopol polymers. Noveon Technical Data Sheet; 2009.

  40. Lin S-Y, Liao C-M, Hsiue G-H, Liang R-C. Study of a theophylline-Eudragit L mixture using a combined system of microscopic Fourier-transform infrared spectroscopy and differential scanning calorimetry. Thermochim Acta. 1995;254:153–66.

    Article  CAS  Google Scholar 

  41. Eerikainen H, Kauppinen EI. Preparation of polymeric nanoparticles containing corticosteroid by a novel aerosol flow reactor method. Int J Pharm. 2003;263(1–2):69.

    Article  PubMed  CAS  Google Scholar 

  42. Friesen DT, Shanker R, Crew M, Smithey DT, Curatolo WJ, Nightingale JAS. Hydroxypropyl methylcellulose acetate succinate-based spray-dried dispersions: an overview. Mol Pharm. 2008;5(6):1003–19.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

The authors thank Stiefel laboratories Ltd., a GSK company, for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian C. Williams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rizi, K., Green, R.J., Donaldson, M.X. et al. Using pH Abnormalities in Diseased Skin to Trigger and Target Topical Therapy. Pharm Res 28, 2589–2598 (2011). https://doi.org/10.1007/s11095-011-0488-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0488-4

KEY WORDS

Navigation