Skip to main content
Log in

Poly(Glycerol Adipate-co-ω-Pentadecalactone) Spray-Dried Microparticles as Sustained Release Carriers for Pulmonary Delivery

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The aim of this work was to optimize biodegradable polyester poly(glycerol adipate-co-ω-pentadecalactone), PGA-co-PDL, microparticles as sustained release (SR) carriers for pulmonary drug delivery.

Methods

Microparticles were produced by spray drying directly from double emulsion with and without dispersibility enhancers (L-arginine and L-leucine) (0.5–1.5%w/w) using sodium fluorescein (SF) as a model hydrophilic drug.

Results

Spray-dried microparticles without dispersibility enhancers exhibited aggregated powders leading to low fine particle fraction (%FPF) (28.79 ± 3.24), fine particle dose (FPD) (14.42 ± 1.57 μg), with a mass median aerodynamic diameter (MMAD) 2.86 ± 0.24 μm. However, L-leucine was significantly superior in enhancing the aerosolization performance (L-arginine:%FPF 27.61 ± 4.49–26.57 ± 1.85; FPD 12.40 ± 0.99–19.54 ± 0.16 μg and MMAD 2.18 ± 0.35–2.98 ± 0.25 μm, L-leucine:%FPF 36.90 ± 3.6–43.38 ± 5.6; FPD 18.66 ± 2.90–21.58 ± 2.46 μg and MMAD 2.55 ± 0.03–3.68 ± 0.12 μm). Incorporating L-leucine (1.5%w/w) reduced the burst release (24.04 ± 3.87%) of SF compared to unmodified formulations (41.87 ± 2.46%), with both undergoing a square root of time (Higuchi’s pattern) dependent release. Comparing the toxicity profiles of PGA-co-PDL with L-leucine (1.5%w/w) (5 mg/ml) and poly(lactide-co-glycolide), (5 mg/ml) spray-dried microparticles in human bronchial epithelial 16HBE14o- cell lines, resulted in cell viability of 85.57 ± 5.44 and 60.66 ± 6.75%, respectively, after 72 h treatment.

Conclusion

The above data suggest that PGA-co-PDL may be a useful polymer for preparing SR microparticle carriers, together with dispersibility enhancers, for pulmonary delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. Namekawa S, Uyama H, Kobayashi S. Enzymatic synthesis of polyesters from lactones, dicarboxylic acid divinyl esters, and glycols through combination of ring-opening polymerization and polycondensation. Biomacromolecules. 2000;1(3):335–8.

    Article  PubMed  CAS  Google Scholar 

  2. Kobayashi S. Enzymatic polymerisation: a new method of polymer synthesis. J Polym Sci. 1999;37(16):3041–56.

    CAS  Google Scholar 

  3. Namekawa S, Suda S, Uyama H, Kobayashi S. Lipase-catalyzed ring-opening polymerization of lactones to polyesters and its mechanistic aspects. Int J Biol Macromolecules. 1999;25(1–3):145–51.

    Article  CAS  Google Scholar 

  4. Kallinteri P, Higgins S, Hutcheon GA, St Pourcain CB, Garnett MC. Novel functionalized biodegradable polymers for nanoparticle drug delivery systems. Biomacromolecules. 2005;6(4):1885–94.

    Article  PubMed  CAS  Google Scholar 

  5. Puri S, Kallinteri P, Higgins S, Hutcheon GA, Garnett MC. Drug incorporation and release of water soluble drugs from novel functionalised poly(glycerol adipate) nanoparticles. J Control Release. 2008;125(1):59–67.

    Article  PubMed  CAS  Google Scholar 

  6. Thompson CJ, Hansford D, Higgins S, Rostron C, Hutcheon GA, Munday DL. Evaluation of ibuprofen-loaded microspheres prepared from novel copolyesters. Int J Pharm. 2007;329(1–2):53–61.

    Article  PubMed  CAS  Google Scholar 

  7. Gaskell EE, Hobbs G, Rostron C, Hutcheon GA. Encapsulation and release of alpha-chymotrypsin from poly(glycerol adipate-co-omega-pentadecalactone) microparticles. J Microencapsul. 2008;25(3):187–95.

    Article  PubMed  CAS  Google Scholar 

  8. Ungaro F, Bianca R, Giovino C, Miro A, Sorrentino R, Quaglia F, et al. Insulin-loaded PLGA/cyclodextrin large porous particles with improved aerosolization properties: in vivo deposition and hypoglycaemic activity after delivery to rat lungs. J Control Release. 2009;135(1):25–34.

    Article  PubMed  CAS  Google Scholar 

  9. Lee ES, Kwon MJ, Na K, Bae JH. Protein release behavior from porous microparticle with lysozyme/hyaluronate ionic complex. Colloids Surf B Biointerfaces. 2007;55(1):125–30.

    Article  PubMed  CAS  Google Scholar 

  10. Newhouseand MT, Corkery KJ. Aerosols for systemic delivery of macromolecules. Respir Care Clin N Am. 2001;7(2):261–75.

    Article  Google Scholar 

  11. Westerman EM, De Boer AH, Le Brun PPH, Touw DJ, Roldaan AC, Frijlink HW, et al. Dry powder inhalation of colistin in cystic fibrosis patients: a single dose pilot study. J Cyst Fibros. 2007;6(4):284–92.

    Article  PubMed  CAS  Google Scholar 

  12. Rabbani NR, Seville PC. The influence of formulation components on the aerosolisation properties of spray-dried powders. J Control Release. 2005;110(1):130–40.

    Article  PubMed  CAS  Google Scholar 

  13. Seville PC, Kellaway IW, Birchall JC. Preparation of dry powder dispersions for non-viral gene delivery by freeze-drying and spray-drying. J Gene Med. 2002;4(4):428–37.

    Article  PubMed  CAS  Google Scholar 

  14. Zeng XM, Martin GP, Marriott C. The controlled delivery of drugs to the lung. Int J Pharm. 1995;124(2):149–64.

    Article  CAS  Google Scholar 

  15. Hardyand JG, Chadwick TS. Sustained release drug delivery to the lungs - An option for the future. Clin Pharmacokinet. 2000;39(4):1–4.

    Article  Google Scholar 

  16. Cook RO, Pannu RK, Kellaway IW. Novel sustained release microspheres for pulmonary drug delivery. J Control Release. 2005;104(1):79–90.

    Article  PubMed  CAS  Google Scholar 

  17. Kawashima Y, Yamamoto H, Takeuchi H, Fujioka S, Hino T. Pulmonary delivery of insulin with nebulized DL-lactide/glycolide copolymer (PLGA) nanospheres to prolong hypoglycemic effect. J Control Release. 1999;62(1–2):279–87.

    Article  PubMed  CAS  Google Scholar 

  18. Edwards DA, Hanes J, Caponetti G, Hrkach J, BenJebria A, Eskew ML, et al. Large porous particles for pulmonary drug delivery. Science. 1997;276(5320):1868–71.

    Article  PubMed  CAS  Google Scholar 

  19. Hanes J, Edwards DA, Evora C, Langer R. Particles incorporating surfactants for pulmonary drug delivery, Massachusetts Institute of Technology and the Penn State Research Foundation, 1999; 303–4.

  20. Learoyd TP, Burrows JL, French E, Seville PC. Sustained delivery of salbutamol and beclometasone from spray-dried double emulsions. J Microencapsul. 2010;27(2):162–70.

    Article  PubMed  CAS  Google Scholar 

  21. Fiegel J, Fu H, Hanes J. Poly(ether-anhydride) dry powder aerosols for sustained drug delivery in the lungs. J Control Release. 2004;96(3):411–23.

    Article  PubMed  CAS  Google Scholar 

  22. van de Weert M, Hennink WE, Jiskoot W. Protein instability in poly(lactic-co-glycolic acid) microparticles. Pharm Res. 2000;17(10):1159–67.

    Article  PubMed  Google Scholar 

  23. Batycky RP, Hanes J, Langer R, Edwards DA. A theoretical model of erosion and macromolecular drug release from biodegrading microspheres. J Pharm Sci. 1997;86(12):1464–77.

    Article  PubMed  CAS  Google Scholar 

  24. Tawfeek HM, Khidr SH, Samy EM, Ahmed SM, Hutcheon GA, Saleem I. PGA-co-PDL as a novel carrier for pulmonary drug delivery. 7th world meeting of pharmaceutic, biopharmaceutics and industrial pharmacy, Malta. 2010.

  25. He P, Davis SS, Illum L. Sustained release chitosan microspheres prepared by novel spray drying methods. J Microencapsul. 1999;16(3):343–55.

    Article  PubMed  CAS  Google Scholar 

  26. Li WI, Perzl M, Heyder J, Langer R, Brain JD, Englmeier KH, et al. Aerodynamics and aerosol particle deaggregation phenomena in model oral-pharyngeal cavities. J Aerosol Sci. 1996;27(8):1269–86.

    Article  CAS  Google Scholar 

  27. Li HY, Seville PC, Williamson IJ, Birchall JC. The use of amino acids to enhance the aerosolisation of spary dried powders for pulmonary gene therapy. J Gene Med. 2005;7(3):1035–43.

    Article  PubMed  CAS  Google Scholar 

  28. Thompson CJ, Hansford D, Higgins S, Hutcheon GA, Rostron C, Munday DL. Enzymatic synthesis and evaluation of new novel omega-pentadecalactone polymers for the production of biodegradable microspheres. J Microencapsul. 2006;23(2):213–26.

    Article  PubMed  CAS  Google Scholar 

  29. Grenha A, Seijo B, Remuñán-López C. Microencapsulated chitosan nanoparticles for lung protein delivery. Eur J Pharm Sci. 2005;25(4–5):427–37.

    Article  PubMed  CAS  Google Scholar 

  30. Li X, Guo Q, Zheng X, Kong X, Shi S, Chen L, et al. Preparation of honokiol-loaded chitosan microparticles via spray-drying method intended for pulmonary delivery. Drug Deliv. 2009;16(3):160–6.

    Article  PubMed  CAS  Google Scholar 

  31. Learoyd TP, Burrows JL, French E, Seville PC. Chitosan-based spray-dried respirable powders for sustained delivery of terbutaline sulfate. Eur J Pharm Biopharm. 2008;68(2):224–34.

    Article  PubMed  CAS  Google Scholar 

  32. Bosquillon C, Préat V, Vanbever R. Pulmonary delivery of growth hormone using dry powders and visualization of its local fate in rats. J Control Release. 2004;96(2):233–44.

    Article  PubMed  CAS  Google Scholar 

  33. Feddah MR, Brown KF, Gipps EM, Davies NM. In-vitro characterisation of metered dose inhaler versus dry powder inhaler glucocorticoid products: Influence of inspiratory flow rates. J Pharm Pharm Sci. 2000;3(3):317–24.

    CAS  Google Scholar 

  34. Mittal G, Sahana DK, Bhardwaj V, Kumar M. Estradiol loaded PLGA nanoparticles for oral administration: effect of polymer molecular weight and copolymer composition on release behavior in vitro and in vivo. J Control Release. 2007;119(1):77–85.

    Article  PubMed  CAS  Google Scholar 

  35. Ståhl K, Claesson M, Lilliehorn P, Lindén H, Bäckström K. The effect of process variables on the degradation and physical properties of spray dried insulin intended for inhalation. Int J Pharm. 2002;233(1–2):227–37.

    Article  PubMed  Google Scholar 

  36. Chew NYK, Tang P, Chan HK, Raper JA. How much particle surface corrugation is sufficient to improve aerosol performance of powders? Pharm Res. 2005;22(1):148–52.

    Article  PubMed  CAS  Google Scholar 

  37. Uchida T, Yoshida K, Nakada Y, Nagareyan N, Konishi Y, Nakai A, et al. Preparation and characterization of polylactic acid microspheres containing water-soluble anesthetics with small molecular weight. Chem Pharm Bull Tokyo. 1997;45(3):513–7.

    CAS  Google Scholar 

  38. Corrigan OI. Thermal-analysis of spray-dried products. ThermochimActa. 1995;24(8):245–58.

    Article  Google Scholar 

  39. Neumann BS. In: Bean HS, Beckett AH, Carless JE, editors. Advances in pharmaceutical sciences. London: Academic; 1967. p. 181–221.

    Google Scholar 

  40. Seville PC, Learoyd TP, Li HY, Williamson IJ, Birchall JC. Amino acid-modified spray-dried powders with enhanced aerosolisation properties for pulmonary drug delivery. Powder Tech. 2007;178(1):40–50.

    Article  CAS  Google Scholar 

  41. Alder M, Unger M, Lee G. Surface composition of spray dried particles of bovine serum albumin/trehalose/surfactant. Pharm Res. 2000;17(7):863–70.

    Article  Google Scholar 

  42. Najafabadi AR, Gilani K, Barghi M, Rafiee-Tehrani M. The effect of vehicle on physical properties and aerosolisation behaviour of disodium cromoglycate microparticles spray dried alone or with L-leucine. Int J Pharm. 2004;285(1–2):97–108.

    Article  PubMed  CAS  Google Scholar 

  43. Chew NYK, Shekunov BY, Tong HHY, Chow AHL, Savage C, Wu J, et al. Effect of amino acids on the dispersion of disodium cromoglycate powders. J Pharm Sci. 2005;94(10):2289–300.

    Article  PubMed  CAS  Google Scholar 

  44. Glinski J, Chavepeyer G, Platten JK. Surface properties of aqueous solutions of L-leucine. Biophys Chem. 2000;84(2):99–103.

    Article  CAS  Google Scholar 

  45. Maa YF, Nguyen PAT, Hsu SW. Spray-drying of air-liquid interface sensitive recombinant human growth hormone. J Pharm Sci. 1998;87(2):152–9.

    Article  PubMed  CAS  Google Scholar 

  46. Thompson CJ, Hansford D, Munday DL, Higgins S, Rostron C, Hutcheon GA. Synthesis and evaluation of novel polyester-ibuprofen conjugates for modified drug release. Drug Dev Ind Pharm. 2008;34(8):877–84.

    Article  PubMed  CAS  Google Scholar 

  47. Tawfeek HM. Evaluation of novel biodegradable polyesters for pulomnary protein delivery, Faculty of Pharmacy, Vol. Doctor of Philosophy, Assuit University, Assuit, Egypt, 2011.

  48. Canal-Raffin M, L’Azou B, Martinez B, Sellier E, Fawaz F, Robinson P et al. Physicochemical characteristics and bronchial epithelial cell cytotoxicity of Folpan 80 WG(R) and Myco 500(R), two commercial forms of folpet. Part Fibre Toxicol. 2007;4(8):1743-8977-4-8.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

Hesham Tawfeek would like to thank the Ministry of Higher Education, Egyptian government, for funding his Ph.D studies at Liverpool John Moores University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imran Saleem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tawfeek, H., Khidr, S., Samy, E. et al. Poly(Glycerol Adipate-co-ω-Pentadecalactone) Spray-Dried Microparticles as Sustained Release Carriers for Pulmonary Delivery. Pharm Res 28, 2086–2097 (2011). https://doi.org/10.1007/s11095-011-0433-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0433-6

KEY WORDS

Navigation