Skip to main content
Log in

Effects of Metabolic Acidosis on Expression Levels of Renal Drug Transporters

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

In the renal proximal tubular cells, various transporters play important roles in the secretion and reabsorption of drugs. When metabolic acidosis is induced, a number of adaptive changes occur in the kidney. The purpose of this study was to clarify the changes of drug transporters under the acidosis and the effects of these changes on urinary drug excretion.

Methods

Wistar/ST rats were given 1.5% NH4Cl in tap water for 48 h to induce the acidosis. Pharmacokinetics of PSP or metformin was evaluated. In addition, expression levels of drug transporters were examined by Western Blotting.

Results

The renal clearance of PSP was markedly decreased, whereas the creatinine clearance and renal clearance of metformin were unchanged. Furthermore, Western blots indicated that the protein expression level of organic anion transporter (OAT) 3 was decreased. In contrast to OAT3 levels, OAT1 and organic cation transporter (OCT) 2 levels were unaffected. An immunohistochemical analysis showed that the OAT3 protein in the proximal tubules was localized in the basolateral membrane both of the normal and the acidosis rats.

Conclusion

The decrease of renal excretion of anionic drugs during metabolic acidosis might be partly due to a reduction in the level of OAT3 protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. Inui K, Masuda S, Saito H. Cellular and molecular aspects of drug transport in the kidney. Kidney Int. 2000;58:944–58.

    Article  PubMed  CAS  Google Scholar 

  2. Dresser MJ, Leabman MK, Giacomini KM. Transporters involved in the elimination of drugs in the kidney: organic anion transporters and organic cation transporters. J Pharm Sci. 2001;90:397–421.

    Article  PubMed  CAS  Google Scholar 

  3. Wright SH, Dantzler WH. Molecular and cellular physiology of renal organic cation and anion transport. Physiol Rev. 2004;84:987–1049.

    Article  PubMed  CAS  Google Scholar 

  4. Anzai N, Kanai Y, Endou H. Organic anion transporter family: current knowledge. J Pharmacol Sci. 2006;100:411–26.

    Article  PubMed  CAS  Google Scholar 

  5. Rizwan AN, Burckhardt G. Organic anion transporters of the SLC22 family: biopharmaceutical, physiological, and pathological roles. Pharm Res. 2007;24:450–70.

    Article  PubMed  CAS  Google Scholar 

  6. van de Water FM, Masereeuw R, Russel FG. Function and regulation of multidrug resistance proteins (MRPs) in the renal elimination of organic anions. Drug Metab Rev. 2005;37:443–71.

    Article  PubMed  Google Scholar 

  7. Sugawara-Yokoo M, Urakami Y, Koyama H, Fujikura K, Masuda S, Saito H, et al. Differential localization of organic cation transporters rOCT1 and rOCT2 in the basolateral membrane of rat kidney proximal tubules. Histochem Cell Biol. 2000;114:175–80.

    PubMed  CAS  Google Scholar 

  8. Urakami Y, Okuda M, Masuda S, Akazawa M, Saito H, Inui K. Distinct characteristics of organic cation transporters, OCT1 and OCT2, in the basolateral membrane of renal tubules. Pharm Res. 2001;18:1528–34.

    Article  PubMed  CAS  Google Scholar 

  9. Jonker JW, Schinkel AH. Pharmacological and physiological functions of the polyspecific organic cation transporters: OCT1, 2, and 3 (SLC22A1-3). J Pharmacol Exp Ther. 2004;308:2–9.

    Article  PubMed  CAS  Google Scholar 

  10. Otsuka M, Matsumoto T, Morimoto R, Arioka S, Omote H, Moriyama Y. A human transporter protein that mediates the final excretion step for toxic organic cations. Proc Natl Acad Sci USA. 2005;102:17923–8.

    Article  PubMed  CAS  Google Scholar 

  11. Terada T, Inui K. Physiological and pharmacokinetic roles of H+/organic cation antiporters (MATE/SLC47A). Biochem Pharmacol. 2008;75:1689–96.

    Article  PubMed  CAS  Google Scholar 

  12. Sakurai Y, Motohashi H, Ueo H, Masuda S, Saito H, Okuda M, et al. Expression levels of renal organic anion transporters (OATs) and their correlation with anionic drug excretion in patients with renal diseases. Pharm Res. 2004;21:61–7.

    Article  PubMed  CAS  Google Scholar 

  13. Sakurai Y, Motohashi H, Ogasawara K, Terada T, Masuda S, Katsura T, et al. Pharmacokinetic significance of renal OAT3 (SLC22A8) for anionic drug elimination in patients with mesangial proliferative glomerulonephritis. Pharm Res. 2005;22:2016–22.

    Article  PubMed  CAS  Google Scholar 

  14. Nishihara K, Masuda S, Ji L, Katsura T, Inui K. Pharmacokinetic significance of luminal multidrug and toxin extrusion 1 in chronic renal failure rats. Biochem Pharmacol. 2007;73:1482–90.

    Article  PubMed  CAS  Google Scholar 

  15. Chen J, Terada T, Ogasawara K, Katsura T, Inui K. Adaptive responses of renal organic anion transporter 3 (OAT3) during cholestasis. Am J Physiol Renal Physiol. 2008;295:F247–52.

    Article  PubMed  CAS  Google Scholar 

  16. Curthoys NP, Gstraunthaler G. Mechanism of increased renal gene expression during metabolic acidosis. Am J Physiol Renal Physiol. 2001;281:F381–90.

    PubMed  CAS  Google Scholar 

  17. Ibrahim H, Lee YJ, Curthoys NP. Renal response to metabolic acidosis: role of mRNA stabilization. Kidney Int. 2008;73:11–8.

    Article  PubMed  CAS  Google Scholar 

  18. Ambuhl PM, Amemiya M, Danczkay M, Lotscher M, Kaissling B, Moe OW, et al. Chronic metabolic acidosis increases NHE3 protein abundance in rat kidney. Am J Physiol. 1996;271:F917–25.

    PubMed  CAS  Google Scholar 

  19. Wu MS, Biemesderfer D, Giebisch G, Aronson PS. Role of NHE3 in mediating renal brush border Na+-H+ exchange. Adaptation to metabolic acidosis. J Biol Chem. 1996;271:32749–52.

    Article  PubMed  CAS  Google Scholar 

  20. Karinch AM, Lin CM, Meng Q, Pan M, Souba WW. Glucocorticoids have a role in renal cortical expression of the SNAT3 glutamine transporter during chronic metabolic acidosis. Am J Physiol Renal Physiol. 2007;292:F448–55.

    Article  PubMed  CAS  Google Scholar 

  21. Moret C, Dave MH, Schulz N, Jiang JX, Verrey F, Wagner CA. Regulation of renal amino acid transporters during metabolic acidosis. Am J Physiol Renal Physiol. 2007;292:F555–66.

    Article  PubMed  CAS  Google Scholar 

  22. Urakami Y, Okuda M, Masuda S, Saito H, Inui K. Functional characteristics and membrane localization of rat multispecific organic cation transporters, OCT1 and OCT2, mediating tubular secretion of cationic drugs. J Pharmacol Exp Ther. 1998;287:800–5.

    PubMed  CAS  Google Scholar 

  23. Ji L, Masuda S, Saito H, Inui K. Down-regulation of rat organic cation transporter rOCT2 by 5/6 nephrectomy. Kidney Int. 2002;62:514–24.

    Article  PubMed  CAS  Google Scholar 

  24. Tsuda M, Terada T, Asaka J, Ueba M, Katsura T, Inui K. Oppositely directed H+ gradient functions as a driving force of rat H+/organic cation antiporter MATE1. Am J Physiol Renal Physiol. 2007;292:F593–8.

    Article  PubMed  CAS  Google Scholar 

  25. Kimura N, Masuda S, Tanihara Y, Ueo H, Okuda M, Katsura T, et al. Metformin is a superior substrate for renal organic cation transporter OCT2 rather than hepatic OCT1. Drug Metab Pharmacokinet. 2005;20:379–86.

    Article  PubMed  CAS  Google Scholar 

  26. Masuda S, Saito H, Nonoguchi H, Tomita K, Inui K. mRNA distribution and membrane localization of the OAT-K1 organic anion transporter in rat renal tubules. FEBS Lett. 1997;407:127–31.

    Article  PubMed  CAS  Google Scholar 

  27. Williamson JR, Corkey BE. Assay of citric acid cycle intermediates and related compounds-update with tissue metabolite levels and intracellular distribution. Methods Enzymol. 1979;55:200–22.

    Article  PubMed  CAS  Google Scholar 

  28. Ueo H, Motohashi H, Katsura T, Inui K. Cl-dependent upregulation of human organic anion transporters: different effects on transport kinetics between hOAT1 and hOAT3. Am J Physiol Renal Physiol. 2007;293:F391–7.

    Article  PubMed  CAS  Google Scholar 

  29. Nordgren A, Karlsson T, Wiklund L. Ammonium chloride and alpha-ketoglutaric acid increase glutamine availability in the early phase of induced acute metabolic acidosis. Acta Anaesthesiol Scand. 2006;50:840–7.

    Article  PubMed  CAS  Google Scholar 

  30. Nagai J, Yano I, Hashimoto Y, Takano M, Inui K. Efflux of intracellular alpha-ketoglutarate via p-aminohippurate/dicarboxylate exchange in OK kidney epithelial cells. J Pharmacol Exp Ther. 1998;285:422–7.

    PubMed  CAS  Google Scholar 

  31. Metges CC, Petzke KJ, El-Khoury AE, Henneman L, Grant I, Bedri S, et al. Incorporation of urea and ammonia nitrogen into ileal and fecal microbial proteins and plasma free amino acids in normal men and ileostomates. Am J Clin Nutr. 1999;70:1046–58.

    PubMed  CAS  Google Scholar 

  32. Scheen AJ. Clinical pharmacokinetics of metformin. Clin Pharmacokinet. 1996;30:359–71.

    Article  PubMed  CAS  Google Scholar 

  33. Kimura N, Okuda M, Inui K. Metformin transport by renal basolateral organic cation transporter hOCT2. Pharm Res. 2005;22:255–9.

    Article  PubMed  CAS  Google Scholar 

  34. Tanihara Y, Masuda S, Sato T, Katsura T, Ogawa O, Inui K. Substrate specificity of MATE1 and MATE2-K, human multidrug and toxin extrusions/H+-organic cation antiporters. Biochem Pharmacol. 2007;74:359–71.

    Article  PubMed  CAS  Google Scholar 

  35. Tsuda M, Terada T, Mizuno T, Katsura T, Shimakura J, Inui K. Targeted disruption of the multidrug and toxin extrusion 1 (mate1) gene in mice reduces renal secretion of metformin. Mol Pharmacol. 2009;75:1280–6.

    Article  PubMed  CAS  Google Scholar 

  36. Motohashi H, Sakurai Y, Saito H, Masuda S, Urakami Y, Goto M, et al. Gene expression levels and immunolocalization of organic ion transporters in the human kidney. J Am Soc Nephrol. 2002;13:866–74.

    PubMed  CAS  Google Scholar 

  37. Bergwerk AJ, Shi X, Ford AC, Kanai N, Jacquemin E, Burk RD, et al. Immunologic distribution of an organic anion transport protein in rat liver and kidney. Am J Physiol. 1996;271:G231–8.

    PubMed  CAS  Google Scholar 

  38. Mikkaichi T, Suzuki T, Onogawa T, Tanemoto M, Mizutamari H, Okada M, et al. Isolation and characterization of a digoxin transporter and its rat homologue expressed in the kidney. Proc Natl Acad Sci USA. 2004;101:3569–74.

    Article  PubMed  CAS  Google Scholar 

  39. Masuda S. Functional characteristics and pharmacokinetic significance of kidney-specific organic anion transporters, OAT-K1 and OAT-K2, in the urinary excretion of anionic drugs. Drug Metab Pharmacokinet. 2003;18:91–103.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideyuki Motohashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaowa, A., Motohashi, H., Katsura, T. et al. Effects of Metabolic Acidosis on Expression Levels of Renal Drug Transporters. Pharm Res 28, 1023–1030 (2011). https://doi.org/10.1007/s11095-010-0348-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0348-7

KEY WORDS

Navigation