Skip to main content
Log in

Simultaneous Delivery of Chemotherapeutic and Thermal-Optical Agents to Cancer Cells by a Polymeric (PLGA) Nanocarrier: An In Vitro Study

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To test the effectiveness of a dual–agent-loaded PLGA nanoparticulate drug delivery system containing doxorubicin (DOX) and indocyanine green (ICG) in a DOX-sensitive cell line and two resistant cell lines that have different resistance mechanisms.

Methods

The DOX-sensitive MES-SA uterine sarcoma cell line was used as a negative control. The two resistant cell lines were uterine sarcoma MES-SA/Dx5, which overexpresses the multidrug resistance exporter P-glycoprotein, and ovarian carcinoma SKOV-3, which is less sensitive to doxorubicin due to a p53 gene mutation. The cellular uptake, subcellular localization and cytotoxicity of the two agents when delivered via nanoparticles (NPs) were compared to their free-form administration.

Results

The cellular uptake and cytotoxicity of DOX delivered by NPs were comparable to the free form in MES-SA and SKOV-3, but much higher in MES-SA/Dx5, indicating the capability of the NPs to overcome P-glycoprotein resistance mechanisms. NP-encapsulated ICG showed slightly different subcellular localization, but similar fluorescence intensity when compared to free ICG, and retained the ability to generate heat for hyperthermia delivery.

Conclusion

The dual-agent-loaded system allowed for the simultaneous delivery of hyperthermia and chemotherapy, and this combinational treatment greatly improved cytotoxicity in MES-SA/Dx5 cells and to a lesser extent in SKOV-3 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

DOX:

Doxorubicin

ICG:

Indocyanine green

MDR:

Multidrug resistance

P-gp:

P-glycoprotein

NIR:

Near-infrared

NP:

Nanoparticle

PLGA:

Poly (DL-lactide-co-glycolide)

DMSO:

Dimethylsulfoxide

PVA:

Polyvinyl alcohol

DCM:

Dichloromethane

ICG-DOX-PLGANPs:

Poly (DL-lactide-co-glycolide) NPs loaded with indocyanine green and doxorubicin

DLS:

Dynamic light scattering

SEM:

Scanning electron microscopy

Dx5:

MES-SA/Dx5

FBS:

Fetal bovine serum

ICG-DOX:

Nonencapsulated DOX and ICG mixture solution

DPBS:

Dulbecco’s Phosphate Buffered Saline

NPC:

Nuclear pore complex

REFERENCES

  1. Yi C, Gratzl M. Continuous in situ electrochemical monitoring of doxorubicin efflux from sensitive and drug-resistant cancer cells. Biophys J. 1998;75(5):2255–61.

    Article  CAS  PubMed  Google Scholar 

  2. Roninson IB. Molecular mechanism of multidrug resistance in tumor cells. Clin Physiol Biochem. 1987;5(3–4):140–51.

    CAS  PubMed  Google Scholar 

  3. Tan ML, Choong PF, Dass CR. Review: doxorubicin delivery systems based on chitosan for cancer therapy. J Pharm Pharmacol. 2009;61(2):131–42.

    Article  CAS  PubMed  Google Scholar 

  4. Desmettre T, Devoisselle JM, Mordon S. Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography. Surv Ophthalmol. 2000;45(1):15–27.

    Article  CAS  PubMed  Google Scholar 

  5. Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2002;54(5):631–51.

    Article  CAS  PubMed  Google Scholar 

  6. McDonald DM, Choyke PL. Imaging of angiogenesis: from microscope to clinic. Nat Med. 2003;9(6):713–25.

    Article  CAS  PubMed  Google Scholar 

  7. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407(6801):249–57.

    Article  CAS  PubMed  Google Scholar 

  8. Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev. 2003;55(3):329–47.

    Article  CAS  PubMed  Google Scholar 

  9. Vasir JK, Labhasetwar V. Targeted drug delivery in cancer therapy. Technol Cancer Res Treat. 2005;4(4):363–74.

    CAS  PubMed  Google Scholar 

  10. Saxena V, Sadoqi M, Shao J. Polymeric nanoparticulate delivery system for Indocyanine green: biodistribution in healthy mice. Int J Pharm. 2006;308(1–2):200–4.

    Article  CAS  PubMed  Google Scholar 

  11. Overgaard J. Combined adriamycin and hyperthermia treatment of a murine mammary carcinoma in vivo. Cancer Res. 1976;36(9 pt.1):3077–81.

    CAS  PubMed  Google Scholar 

  12. Tang Y, McGoron AJ. Combined effects of laser-ICG photothermotherapy and doxorubicin chemotherapy on ovarian cancer cells. J Photochem Photobiol B Biol. 2009;97(3):138–44.

    Article  CAS  Google Scholar 

  13. Si HY, Li DP, Wang TM, Zhang HL, Ren FY, Xu ZG, et al. Improving the anti-tumor effect of genistein with a biocompatible superparamagnetic drug delivery system. Journal of nanoscience and nanotechnology. Apr;10(4):2325–31.

  14. Jain TK, Richey J, Strand M, Leslie-Pelecky DL, Flask CA, Labhasetwar V. Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging. Biomaterials. 2008;29(29):4012–21.

    Article  CAS  PubMed  Google Scholar 

  15. Xiao X, He Q, Huang K. Possible magnetic multifunctional nanoplatforms in medicine. Med Hypotheses. 2007;68(3):680–2.

    Article  CAS  PubMed  Google Scholar 

  16. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA. 2003;100(23):13549–54.

    Article  CAS  PubMed  Google Scholar 

  17. Kalambur VS, Longmire EK, Bischof JC. Cellular level loading and heating of superparamagnetic iron oxide nanoparticles. Langmuir. 2007;23(24):12329–36.

    CAS  Google Scholar 

  18. Park H, Yang J, Lee J, Haam S, Choi IH, Yoo KH. Multifunctional nanoparticles for combined doxorubicin and photothermal treatments. ACS Nano. 2009;3(10):2919–26.

    Article  CAS  PubMed  Google Scholar 

  19. O'Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 2004;209(2):171–6.

    Article  PubMed  Google Scholar 

  20. Smart SK, Cassady AI, Lu GQ, Martin DJ. The biocompatibility of carbon nanotubes. Carbon. 2006;44(6):1034–47.

    Article  CAS  Google Scholar 

  21. Li Z, Huang P, Zhang X, Lin J, Yang S, Liu B, et al. RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy. Molecular Pharmaceutics. Feb 1;7(1):94–104.

  22. Manchanda R, Fernandez-Fernandez A, Nagesetti A, McGoron AJ. Preparation and characterization of a polymeric (PLGA) nanoparticulate drug delivery system with simultaneous incorporation of chemotherapeutic and thermo-optical agents. Colloids and surfaces B, Biointerfaces. Jan 1;75(1):260–7.

  23. Monks A, Scudiero D, Skehan P, Shoemaker R, Paull K, Vistica D, et al. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J Natl Cancer Inst. 1991;83(11):757–66.

    Article  CAS  PubMed  Google Scholar 

  24. Prabha S, Zhou WZ, Panyam J, Labhasetwar V. Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles. Int J Pharm. 2002;244(1–2):105–15.

    Article  CAS  PubMed  Google Scholar 

  25. Zolnik BS, Leary PE, Burgess DJ. Elevated temperature accelerated release testing of PLGA microspheres. J Control Release. 2006;112(3):293–300.

    CAS  Google Scholar 

  26. Misra R, Sahoo SK. Intracellular trafficking of nuclear localization signal conjugated nanoparticles for cancer therapy. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. Jan 31;39(1-3):152–63.

  27. Sahoo SK, Labhasetwar V. Enhanced antiproliferative activity of transferrin-conjugated paclitaxel-loaded nanoparticles is mediated via sustained intracellular drug retention. Mol Pharm. 2005;2(5):373–83.

    Article  CAS  PubMed  Google Scholar 

  28. Qaddoumi MG, Gukasyan HJ, Davda J, Labhasetwar V, Kim KJ, Lee VH. Clathrin and caveolin-1 expression in primary pigmented rabbit conjunctival epithelial cells: role in PLGA nanoparticle endocytosis. Mol Vis. 2003;9:559–68.

    CAS  PubMed  Google Scholar 

  29. Wong HL, Bendayan R, Rauth AM, Xue HY, Babakhanian K, Wu XY. A mechanistic study of enhanced doxorubicin uptake and retention in multidrug resistant breast cancer cells using a polymer-lipid hybrid nanoparticle system. J Pharmacol Exp Ther. 2006;317(3):1372–81.

    Article  CAS  PubMed  Google Scholar 

  30. Panyam J, Labhasetwar V. Sustained cytoplasmic delivery of drugs with intracellular receptors using biodegradable nanoparticles. Mol Pharm. 2004;1(1):77–84.

    Article  CAS  PubMed  Google Scholar 

  31. Gieseler F, Biersack H, Brieden T, Manderscheid J, Nussler V. Cytotoxicity of anthracyclines: correlation with cellular uptake, intracellular distribution and DNA binding. Ann Hematol. 1994;69 Suppl 1:S13–7.

    Article  CAS  PubMed  Google Scholar 

  32. Belloc F, Lacombe F, Dumain P, Lopez F, Bernard P, Boisseau MR, et al. Intercalation of anthracyclines into living cell DNA analyzed by flow cytometry. Cytometry. 1992;13(8):880–5.

    Article  CAS  PubMed  Google Scholar 

  33. Abels C, Fickweiler S, Weiderer P, Baumler W, Hofstadter F, Landthaler M, et al. Indocyanine green (ICG) and laser irradiation induce photooxidation. Arch Dermatol Res. 2000;292(8):404–11.

    Article  CAS  PubMed  Google Scholar 

  34. Panyam J, Zhou WZ, Prabha S, Sahoo SK, Labhasetwar V. Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J. 2002;16(10):1217–26.

    Article  CAS  PubMed  Google Scholar 

  35. Cartiera MS, Johnson KM, Rajendran V, Caplan MJ, Saltzman WM. The uptake and intracellular fate of PLGA nanoparticles in epithelial cells. Biomaterials. 2009;30(14):2790–8.

    Article  CAS  PubMed  Google Scholar 

  36. Tang Y, McGoron AJ. The Role of Temperature Increase Rate in Combinational Hyperthermia Chemotherapy Treatment. Proc. SPIE, Vol. 7565, 75650C (2010); doi:10.1117/12.842587.

  37. Fan S, Twu NF, Wang JA, Yuan RQ, Andres J, Goldberg ID, et al. Down-regulation of BRCA1 and BRCA2 in human ovarian cancer cells exposed to adriamycin and ultraviolet radiation. Int J Cancer J Int Du Cancer. 1998;77(4):600–9.

    CAS  Google Scholar 

  38. Bottini A, Berruti A, Bersiga A, Brizzi MP, Brunelli A, Gorzegno G, et al. p53 but not bcl-2 immunostaining is predictive of poor clinical complete response to primary chemotherapy in breast cancer patients. Clin Cancer Res. 2000;6(7):2751–8.

    CAS  PubMed  Google Scholar 

  39. Thorburn A, Frankel AE. Apoptosis and anthracycline cardiotoxicity. Mol Cancer Ther. 2006;5(2):197–9.

    Article  CAS  PubMed  Google Scholar 

  40. Sturm I, Rau B, Schlag PM, Wust P, Hildebrandt B, Riess H, et al. Genetic dissection of apoptosis and cell cycle control in response of colorectal cancer treated with preoperative radiochemotherapy. BMC Cancer. 2006;6:124.

    Article  PubMed  Google Scholar 

  41. Fukami T, Nakasu S, Baba K, Nakajima M, Matsuda M. Hyperthermia induces translocation of apoptosis-inducing factor (AIF) and apoptosis in human glioma cell lines. J Neuro-oncol. 2004;70(3):319–31.

    Article  Google Scholar 

  42. Lee SJ, Jeong JR, Shin SC, Huh YM, Song HT, Suh JS, et al. Intracellular translocation of superparamagnetic iron oxide nanoparticles encapsulated with peptide-conjugated poly(D,L lactide-co-glycolide). Journal of Applied Physics. 2005 May;97(10).

Download references

ACKNOWLEDGEMENTS

This work was conducted using the facilities of the Biomedical Engineering Department at Florida International University and partially funded by FLDOH (Grant #08-BB-11), the Biomedical Engineering Young Inventor Award from the Wallace H. Coulter Foundation to R.M., the Florida International University Dissertation Year Fellowship to Y.T., and support from NIH/NIGMS R25 GM061347 to A.F.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony J. McGoron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, Y., Lei, T., Manchanda, R. et al. Simultaneous Delivery of Chemotherapeutic and Thermal-Optical Agents to Cancer Cells by a Polymeric (PLGA) Nanocarrier: An In Vitro Study. Pharm Res 27, 2242–2253 (2010). https://doi.org/10.1007/s11095-010-0231-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0231-6

KEY WORDS

Navigation