Skip to main content

Advertisement

Log in

Nanotechnology-Based Cancer Therapeutics—Promise and Challenge—Lessons Learned Through the NCI Alliance for Nanotechnology in Cancer

  • Perspective
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

The new generation of nanotechnology-based drug formulations is challenging the accepted ways of cancer treatment. Multi-functional nanomaterial constructs have the capability to be delivered directly to the tumor site and eradicate cancer cells selectively, while sparing healthy cells. Tailoring of the nano-construct design can result in enhanced drug efficacy at lower doses as compared to free drug treatment, wider therapeutic window, and lower side effects. Nanoparticle carriers can also address several drug delivery problems which could not be effectively solved in the past and include reduction of multi-drug resistance effects, delivery of siRNA, and penetration of the blood-brain-barrier. Although challenges in understanding toxicity, biodistribution, and paving an effective regulatory path must be met, nanoscale devices carry a formidable promise to change ways cancer is diagnosed and treated. This article summarizes current developments in nanotechnology-based drug delivery and discusses path forward in this field. The discussion is done in context of research and development occurring within the NCI Alliance for Nanotechnology in Cancer program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59:225–49.

    Article  PubMed  Google Scholar 

  2. Grodzinski P, Silver M, Molnar LK. Nanotechnology for cancer diagnostics: promises and challenges. Expert Rev Mol Diagn. 2006;6:307–18.

    Article  CAS  PubMed  Google Scholar 

  3. Laginha KM, Verwoert S, Charrois GJR, Allen TM. Determination of doxorubicin levels in whole tumor and tumor nuclei in murine breast cancer tumors. Clin Cancer Res. 2005;11:6944–9.

    Article  CAS  PubMed  Google Scholar 

  4. Markman M, Kennedy A, Webster K, Kulp B, Peterson G, Belinson J. Phase 2 evaluation of topotecan administered on a 3-day schedule in the treatment of platinum- and paclitaxel-refractory ovarian cancer. Gynecol Oncol. 2000;79:116–9.

    Article  CAS  PubMed  Google Scholar 

  5. Harries M, Ellis P, Harper P. Nanoparticle albumin-bound paclitaxel for metastatic breast cancer. J Clin Oncol. 2005;23:7768–71.

    Article  CAS  PubMed  Google Scholar 

  6. Sparreboom A, Scripture CD, Trieu V, Williams PJ, De T, Yang A, et al. Comparative preclinical and clinical pharmacokinetics of a cremophor-free, nanoparticle albumin-bound paclitaxel (abi-007) and paclitaxel formulated in cremophor (taxol). Clin Cancer Res. 2005;11:4136–43.

    Article  CAS  PubMed  Google Scholar 

  7. Farrell D, Alper J, Ptak K, Panaro NJ, Grodzinski P, Barker AD. Recent advances from the National Cancer Institute Alliance for Nanotechnology in Cancer. ACS Nano. 2010;4:589-594.

    Google Scholar 

  8. Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer. 2005;5:161–71.

    Article  CAS  PubMed  Google Scholar 

  9. Heath JR, Davis ME. Nanotechnology and cancer. Annu Rev Med. 2008;59:251–65.

    Article  CAS  PubMed  Google Scholar 

  10. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2:751–60.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang L, Gu F, Chan J, Wang A, Langer R, Farokhzad O. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther. 2008;83:761–9.

    Article  CAS  PubMed  Google Scholar 

  12. Shi X, Wang SH, Swanson SD, Ge S, Cao Z, Van Antwerp ME, et al. Dendrimer-functionalized shell-crosslinked iron oxide nanoparticles for in-vivo magnetic resonance imaging of tumors. Adv Mater. 2008;20:1671–8.

    Article  CAS  Google Scholar 

  13. Chan JM, Zhang L, Yuet KP, Liao G, Rhee JW, Langer R, et al. Plga-lecithin-peg core-shell nanoparticles for controlled drug delivery. Biomaterials. 2009;30:1627–34.

    Article  CAS  PubMed  Google Scholar 

  14. Gu F, Zhang L, Teply BA, Mann N, Wang A, Radovic-Moreno AF, et al. Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc Natl Acad Sci USA. 2008;105:2586–91.

    Article  CAS  PubMed  Google Scholar 

  15. Davis M. Design and development of IT-101, a cyclodextrin-containing polymer conjugate of camptothecin. Adv Drug Deliv Rev. 2009;61:1189–92.

    Article  CAS  PubMed  Google Scholar 

  16. Schluep T, Hwang J, Hildebrandt IJ, Czernin J, Choi CHJ, Alabi CA, et al. Pharmacokinetics and tumor dynamics of the nanoparticle it-101 from pet imaging and tumor histological measurements. Proc Natl Acad Sci. 2009;106:11394–9.

    Article  CAS  PubMed  Google Scholar 

  17. Schluep T, Gunawan P, Ma L, Jensen GS, Duringer J, Hinton S, et al. Polymeric tubulysin-peptide nanoparticles with potent antitumoractivity. Clin Cancer Res. 2009;15:181–9.

    Article  CAS  PubMed  Google Scholar 

  18. Murphy EA, Majeti BK, Barnes LA, Makale M, Weis SM, Lutu-Fuga K, et al. Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis. Proc Natl Acad Sci USA. 2008;105:9343–8.

    Article  CAS  PubMed  Google Scholar 

  19. Davis M. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol Pharm. 2009;6:659–68.

    Article  CAS  PubMed  Google Scholar 

  20. Bartlett DW, Su H, Hildebrandt IJ, Weber WA, Davis ME. Impact of tumor-specific targeting on the biodistribution and efficacy of sirna nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci USA. 2007;104:15549–54.

    Article  CAS  PubMed  Google Scholar 

  21. Devalapally H, Duan Z, Seiden MV, Amiji MM. Modulation of drug resistance in ovarian adenocarcinoma by enhancing intracellular ceramide using tamoxifen-loaded biodegradable polymeric nanoparticles. Clin Cancer Res. 2008;14:3193–203.

    Article  CAS  PubMed  Google Scholar 

  22. van Vlerken LE, Duan Z, Seiden MV, Amiji MM. Modulation of intracellular ceramide using polymeric nanoparticles to overcome multidrug resistance in cancer. Cancer Res. 2007;67:4843–50.

    Article  PubMed  Google Scholar 

  23. Heidel JD, Liu JY-C, Yen Y, Zhou B, Heale BSE, Rossi JJ, et al. Potent sirna inhibitors of ribonucleotide reductase subunit rrm2 reduce cell proliferation in vitro and in vivo. Clin Cancer Res. 2007;13:2207–15.

    Article  CAS  PubMed  Google Scholar 

  24. Park JH, von Maltzahn G, Zhang L, Derfus AM, Simberg D, Harris TJ, et al. Systematic surface engineering of magnetic nanoworms for in vivo tumor targeting. Small. 2009;5:694–700.

    Article  CAS  PubMed  Google Scholar 

  25. Park JH, von Maltzahn G, Zhang L, Schwartz MP, Ruoslahti E, Bhatia SN, et al. Magnetic iron oxide nanoworms for tumor targeting and imaging. Adv Mater. 2008;20:1589.

    Article  Google Scholar 

  26. Veiseh O, Sun C, Fang C, Bhattarai N, Gunn J, Kievit F, et al. Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood-brain barrier. Cancer Res. 2009;69:6200–7.

    Article  CAS  PubMed  Google Scholar 

  27. Veiseh O, Kievit FM, Gunn JW, Ratner BD, Zhang M. A ligand-mediated nanovector for targeted gene delivery and transfection in cancer cells. Biomaterials. 2009;30:649–57.

    Article  CAS  PubMed  Google Scholar 

  28. Veiseh O, Gunn JW, Kievit FM, Sun C, Fang C, Lee JS, et al. Inhibition of tumor-cell invasion with chlorotoxin-bound superparamagnetic nanoparticles. Small. 2009;5:256–64.

    Article  CAS  PubMed  Google Scholar 

  29. Mahmud G, Campbell CJ, Bishop KJM, Komarova YA, Chaga O, Soh S, et al. Directing cell motions on micropatterned ratchets. Nat Phys. 2009;5:606–12.

    Article  CAS  Google Scholar 

  30. Mahmud G, Bishop KJM, Chegel Y, Smoukov SK, Grzybowski BA. Wet-stamped precipitant gradients control the growth of protein microcrystals in an array of nanoliter wells. J Am Chem Soc. 2008;130:2146-+.

    Article  CAS  PubMed  Google Scholar 

  31. McNeil SE. Nanoparticle therapeutics: a personal perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1:264–71.

    Article  CAS  PubMed  Google Scholar 

  32. Adiseshaiah PP, Hall JB, McNeil SE. Nanomaterial standards for efficacy and toxicity assessment. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2010;2:99-112.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This project has been funded in whole or in part with federal funds from the NCI, NIH, under contract HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Grodzinski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farrell, D., Ptak, K., Panaro, N.J. et al. Nanotechnology-Based Cancer Therapeutics—Promise and Challenge—Lessons Learned Through the NCI Alliance for Nanotechnology in Cancer. Pharm Res 28, 273–278 (2011). https://doi.org/10.1007/s11095-010-0214-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0214-7

KEY WORDS

Navigation