Skip to main content

Advertisement

Log in

Suppression of the Inflammatory Cascade is Implicated in Resveratrol Chemoprevention of Experimental Hepatocarcinogenesis

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Resveratrol, present in grapes and red wine, has been found to prevent diethylnitrosamine (DENA)-initiated rat liver tumorigenesis, though the chemopreventive mechanisms are not completely elucidated. The current study was designed to explore whether the antiinflammatory properties of resveratrol play a role in its antihepatocarcinogenic action.

Methods

Liver samples were harvested from a 20-week chemopreventive study in which resveratrol (50, 100 and 300 mg/kg) was shown to inhibit DENA-induced hepatocyte nodules in Sprague-Dawley rats in a dose-responsive manner. Hepatic preneoplastic and inflammatory markers, namely heat shock protein (HSP70), cyclooxygenase-2 (COX-2) and nuclear factor-κB (NF-κB), were studied using immunohistochemical as well as Western blot techniques.

Results

Resveratrol dose-dependently suppressed DENA-induced increased expressions of hepatic HSP70 and COX-2. Resveratrol also attenuated the DENA-mediated translocation of NF-κB p65 from the cytosol to the nucleus with stabilization of inhibitory κB.

Conclusion

The present findings indicate that resveratrol exerts chemoprevention of hepatocarcinogenesis possibly through antiinflammatory effects during DENA-evoked rat liver carcinogenesis by suppressing elevated levels of HSP70, COX-2 as well as NF-κB. These beneficial effects combined with an excellent safety profile encourage the development of resveratrol for chemoprevention and intervention of human HCC that remains a devastating disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

COX-2:

cyclooxygenase-2

DENA:

diethylnitrosamine

HBV:

hepatitis B virus

HCC:

hepatocellular carcinoma

HCV:

hepatitis C virus

HRP:

horseradish peroxidase

HSP70:

heat shock protein 70

IκB:

inhibitor of κB

iNOS:

inducible nitric oxide synthase

NF-κB:

nuclear factor-kappa B

PB:

phenobarbital

PBS:

phosphate-buffered saline

PGs:

prostaglandins

ROS:

reactive oxygen species

REFERENCES

  1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–105.

    Article  PubMed  Google Scholar 

  2. Sherman M. Hepatocellular carcinoma: epidemiology, risk factors, and screening. Semin Liver Dis. 2005;25:143–54.

    Article  PubMed  Google Scholar 

  3. El-Serag HB. Hepatocellular carcinoma: recent trends in the United States. Gastroenterology. 2004;127:S27–34.

    Article  PubMed  Google Scholar 

  4. American Cancer Society. Cancer Facts and Figures 2009. Atlanta, GA, 2009.

  5. Wu L, Tang Z-Y, Li Y. Experimental models of hepatocellular carcinoma: developments and evolution. J Cancer Res Clin Oncol. 2009;135:969–81.

    Article  PubMed  Google Scholar 

  6. Schütte K, Bornschein J, Malfertheiner P. Hepatocellular carcinoma—epidemiological trends and risk factors. Dig Dis. 2009;27:80–92.

    PubMed  Google Scholar 

  7. Bartsch H, Montesano R. Relevance of nitrosamines to human cancer. Carcinogenesis. 1984;5:1381–93.

    Article  PubMed  CAS  Google Scholar 

  8. Kensler TW, Egner PA, Wang JB, Zhu YR, Zhang BC, Lu PX et al. Chemoprevention of hepatocellular carcinoma in aflatoxin endemic areas. Gastroenterology. 2004;127:S310–8.

    Article  PubMed  CAS  Google Scholar 

  9. Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet. 2003;362:1907–17.

    Article  PubMed  Google Scholar 

  10. Je Y, Schutz FAB, Choueiri TK. Risk of bleeding with vascular endothelial growth factor receptor tyrosine-kinase inhibitors sunitinib and sorafenib: a systematic review and mata-analysis of clinical trials. Lancet Oncol. 2009;10:967–74.

    Article  PubMed  CAS  Google Scholar 

  11. Okuno M, Kojima S, Moriwaki H. Chemoprevention of hepatocellular carcinoma: concept, progress and perspectives. J Gastroenterol Hepatol. 2001;16:1329–35.

    Article  PubMed  CAS  Google Scholar 

  12. Yates MS, Kensler TW. Keap1 eye on the target: chemoprevention of liver cancer. Acta Pharmacol Sin. 2007;28:1331–42.

    Article  PubMed  CAS  Google Scholar 

  13. Berasain C, Casillo J, Perugorria MJ, Latasa MU, Prieto J, Avila MA. Inflammation and liver cancer: new molecular links. Ann NY Acad Sci. 2009;1155:206–21.

    Article  PubMed  CAS  Google Scholar 

  14. Joo M, Chi JG, Hyucksang L. Expressions of HSP70 and HSP27 in hepatocellular carcinoma. J Korean Med Sci. 2005;20:829–34.

    Article  PubMed  CAS  Google Scholar 

  15. Murakami A, Ashida H, Terao J. Multitargeted cancer prevention by quercetin. Cancer Lett. 2008;269:315–25.

    Article  PubMed  CAS  Google Scholar 

  16. Wu T. Cyclooxygenase-2 in hepatocellular carcinoma. Cancer Treat Rev. 2006;32:28–44.

    Article  PubMed  CAS  Google Scholar 

  17. Giannitrapani L, Ingrao S, Soresi M, Maria Florena A, La Spada E, Sandonato L et al. Cyclooxygenase-2 expression in chronic liver diseases and hepatocellular carcinoma. Ann NY Acad Sci. 2009;1155:293–9.

    Article  PubMed  CAS  Google Scholar 

  18. Yildirim Y, Ozyilkan O, Bilezikci B, Akcali Z, Haberal M. Lack of influence of cyclooxygenase-2 expression in hepatocellular carcinomas on patient survival. Asian Pac J Cancer Prev. 2008;9:295–8.

    PubMed  Google Scholar 

  19. Karin M. The IκB kinase-a bridge between inflammation and cancer. Cell Res. 2008;18:334–432.

    Article  PubMed  CAS  Google Scholar 

  20. Muriel P. NF-κB in liver diseases: a target for drug therapy. J Appl Toxicol. 2009;29:91–100.

    Article  PubMed  CAS  Google Scholar 

  21. Elsharkawy AM, Mann DA. Nuclear factor-κB and the hepatic inflammation-fibrosis-cancer axis. Hepatology. 2007;46:590–7.

    Article  PubMed  CAS  Google Scholar 

  22. Aggarwal BB, Vijayalekshmi RV, Sung B. Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clin Cancer Res. 2009;15:425–30.

    Article  PubMed  CAS  Google Scholar 

  23. Aggarwal BB, Shishodia S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol. 2006;71:1397–421.

    Article  PubMed  CAS  Google Scholar 

  24. Naithani R, Huma LC, Moriarty RM, McCormick DL, Mehta RG. Comprehensive review of cancer chemopreventive agents evaluated in experimental carcinogenesis models and clinical trials. Curr Med Chem. 2008;15:1044–71.

    Article  PubMed  CAS  Google Scholar 

  25. Rahman I, Biswas SK, Kirkham PA. Regulation of inflammation and redox signaling by dietary polyphenols. Biochem Pharmacol. 2005;72:1439–52.

    Article  CAS  Google Scholar 

  26. Kim YS, Young MR, Bobe G, Colbum NH, Milner JA. Bioactive food components, inflammatory targets, and cancer prevention. Cancer Prev Res. 2009;2:200–8.

    Article  Google Scholar 

  27. Mann CD, Neal CP, Garcea G, Manson MM, Dennison AR, Berry DP. Phytochemicals as potential chemopreventive and chemotherapeutic agents in hepatocarcinogenesis. Eur J Cancer Prev. 2009;18:13–25.

    Article  PubMed  CAS  Google Scholar 

  28. Vidavalur R, Otani H, Singal PK, Maulik N. Significance of wine and resveratrol in cardiovascular disease: French paradox revisited. Exp Clin Cardiol. 2006;11:217–25.

    PubMed  CAS  Google Scholar 

  29. Shakibaei M, Harikumar KB, Aggarwal BB. Resveratrol addiction: to die or not to die. Mol Nutr Food Res. 2009;53:115–28.

    Article  PubMed  CAS  Google Scholar 

  30. Athar M, Back JH, Kopelovich L, Bickers DR, Kim AL. Multiple molecular targets of resveratrol: anti-carcinogenic mechanisms. Arch Biochem Biophys. 2009;486:95–102.

    Article  PubMed  CAS  Google Scholar 

  31. Aggarwal BB, Bhardwaj A, Aggarwal RS, Seeram NP, Shishodia S, Takada Y. Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res. 2004;24:2783–840.

    PubMed  CAS  Google Scholar 

  32. Kundu JK, Surh Y-J. Cancer chemopreventive and therapeutic potential of resveratrol: mechanistic perspectives. Cancer Lett. 2008;269:243–61.

    Article  PubMed  CAS  Google Scholar 

  33. Bishayee A. Cancer prevention and treatment with resveratrol: from rodent studies to clinical trials. Cancer Prev Res. 2009;2:409–18.

    Article  Google Scholar 

  34. Bishayee A, Politis T, Darvesh AS. Resveratrol in the chemoprevention and treatment of hepatocellular carcinoma. Cancer Treat Rev. 2010;36:43–53.

    Article  PubMed  CAS  Google Scholar 

  35. Bishayee A, Dhir N. Resveratrol-mediated chemoprevention of diethylnitrosamine-initiated hepatocarcinogenesis: inhibition of cell proliferation and induction of apoptosis. Chem-Biol Interact. 2009;179:131–44.

    Article  PubMed  CAS  Google Scholar 

  36. Farber E, Sarma DS. Hepatocarcinogenesis: a dynamic cellular perspective. Lab Invest. 1987;56:4–22.

    PubMed  CAS  Google Scholar 

  37. Das S, Das DK. Anti-inflammatory responses of resveratrol. Inflamm Allergy Drug Target. 2007;6:168–73.

    Article  CAS  Google Scholar 

  38. Dignam JD, Lebovitz RM, Roeder RG. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acid Res. 1983;11:1475–89.

    Article  PubMed  CAS  Google Scholar 

  39. Morimoto RI. Cells in stress: transcriptional activation of heat shock genes. Science. 1993;259:1409–10.

    Article  PubMed  CAS  Google Scholar 

  40. Jolly C, Morimoto RI. Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J Natl Cancer Inst. 2000;92:1564–72.

    Article  PubMed  CAS  Google Scholar 

  41. Lim SO, Park SG, Yoo J-H, Park YM, Kim H-J, Jang K-T et al. Expression of heat shock proteins (HSP27, HSP60, HSP70, HSP90, GRP78, GRP94) in hepatitis B virus-related hepatocellular carcinomas and dysplastic nodules. World J Gastroenterol. 2005;11:2072–9.

    PubMed  CAS  Google Scholar 

  42. Yoshida S, Hazama S, Tokuno K, Sakamoto K, Takashima M, Tamesa T et al. Concomitant overexpression of heat-shock protein 70 and HLA class-I in hepatitis C virus-related hepatocellular carcinoma. Anticancer Res. 2009;29:539–44.

    PubMed  Google Scholar 

  43. Chuma M, Sakamoto M, Yamazaki K, Ohta T, Ohki M, Hirohashi S. Expression profiling in multistage hepatocarcinogenesis: identification of HSP70 as a molecular marker of early hepatocellular carcinoma. Hepatology. 2003;37:198–207.

    Article  PubMed  CAS  Google Scholar 

  44. Carr BI, Huang TH, Buzin CH, Itakura K. Induction of heat shock gene expression without heat shock by hepatocarcinogenesis. Cancer Res. 1986;46:5106–11.

    PubMed  CAS  Google Scholar 

  45. Tacchini L, Schiaffonati L, Rappocciolo E, Cairo G, Bernelli-Zazzera A. Expression pattern of the genes for the different members of the heat-shock protein 70 family, ornithine decarboxylase, and c-Ha-ras during the early stages of hepatocarcinogenesis. Mol Carcinog. 1989;2:233–6.

    Article  PubMed  CAS  Google Scholar 

  46. Takami T, Kaposi-Novak P, Uchida K, Gomez-Quiroz LE, Conner EA, Factor VM et al. Loss of hepatocyte growth factor/c-Met signaling pathway accelerates early stages of N–nitrosodiethylamine-induced hepatocarcinogenesis. Cancer Res. 2007;67:9844–51.

    Article  PubMed  CAS  Google Scholar 

  47. Cardile V, Scifo C, Russo A, Falsaperla M, Morgia G, Motta M et al. Involvement of HSP70 in resveratrol-induced apoptosis of human prostate cancer. Anticancer Res. 2003;23:4921–6.

    PubMed  CAS  Google Scholar 

  48. Chakraborty PK, Mustafi SB, Ganguly S, Chatterjee M, Raha S. Resveratrol induces apoptosis in K562 (chronic myelogenous leukemia) cells by targeting a key survival protein, heat shock protein 70. Cancer Sci. 2008;99:1109–16.

    Article  PubMed  CAS  Google Scholar 

  49. Sengottuvelan M, Deeptha K, Nalini N. Influences of dietary resveratrol on early and late molecular markers of 1, 2-dimethylhydrazine-induced colon carcinogenesis. Nutrition. 2009;25:1169–76.

    Article  PubMed  CAS  Google Scholar 

  50. Hla T, Nielson K. Human cyclooxygenase-2 cDNA. Proc Natl Acad Sci USA. 1992;89:7384–8.

    Article  PubMed  CAS  Google Scholar 

  51. Fosselin E. Biochemistry of cyclooxygenase (COX)-2 inhibitors and molecular pathology of COX-2 in neoplasia. Crit Rev Clin Lab Sci. 2000;37:431–502.

    Article  Google Scholar 

  52. Prescott SM, Fitzpatrick FA. Cyclooxygenase-2 and carcinogenesis. Biochim Biophys Acta. 2000;1470:M69–78.

    PubMed  CAS  Google Scholar 

  53. Koga H, Sakisaka S, Ohishi M, Kawaguchi T, Taniguchi E, Sasatomi K et al. Expression of cyclooxygenase-2 in human hepatocellular carcinoma: relevance to tumor dedifferentiation. Hepatology. 1999;29:688–96.

    Article  PubMed  CAS  Google Scholar 

  54. Sung YK, Hwang SY, Kim JO, Bae HI, Kim JC, Kim MK. The correlation between cyclooxygenase-2 expression and hepatocellular carcinogenesis. Mol Cells. 2004;17:35–8.

    PubMed  CAS  Google Scholar 

  55. Hu KQ. Rationale and feasibility of chemoprevention of hepatocellular carcinoma by cyclooxygenase-2 inhibitors. J Lab Clin Med. 2002;139:234–43.

    Article  PubMed  CAS  Google Scholar 

  56. Koga H. Hepatocellular carcinoma: is there a potential for chemoprevention using cyclooxygenase-2 inhibitors? Cancer. 2003;98:661–7.

    Article  PubMed  CAS  Google Scholar 

  57. Ramakrishnan G, Elinos-Báez CM, Jagan S, Augustine TA, Kamaraj S, Anandakumar P et al. Silymarin downregulates COX-2 expression and attenuates hyperlipidemia during NDEA-induced rat hepatocellular carcinoma. Mol Cell Biochem. 2008;313:53–61.

    Article  PubMed  CAS  Google Scholar 

  58. Sivaramakrishnan V, Niranjali Devaraj S. Morin regulates the expression of NF-kappaB-p65, COX-2 and matrix metalloproteinases in diethylnitrosamine induced rat hepatocellular carcinoma. Chem-Biol Interact. 2009;180:353–9.

    Article  PubMed  CAS  Google Scholar 

  59. Bishayee A, Barnes KF, Bhatia D, Darvesh AS, Carroll RT. Resveratrol suppresses oxidative stress and inflammatory response in diethylnitrosamine-initiated rat hepatocarcinogenesis. Cancer Prev Res. 2010;in press.

  60. Khanduja KL, Bhardwai A, Kaushik G. Resveratrol inhibits N-nitrosodiethylamine-induced ornithine decarboxylase and cyclooxygenase in mice. J Nutr Sci Vitaminol. 2004;50:61–5.

    PubMed  CAS  Google Scholar 

  61. Tsujii M, DuBois RN. Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2. Cell. 1995;83:493–501.

    Article  PubMed  CAS  Google Scholar 

  62. Zycova TA, Zhu F, Zhai X, Ma W-Y, Ermakova SP, Lee KW et al. Resveratrol directly targets COX-2 to inhibit carcinogenesis. Mol Carcinog. 2008;47:797–805.

    Article  CAS  Google Scholar 

  63. Cervello M, Montalto G. Cyclooxygenase in hepatocellular carcinoma. World J Gastroenterol. 2006;12:5113–21.

    PubMed  CAS  Google Scholar 

  64. Luther DJ, Ohanyan V, Shamhart PE, Hodnichak CM, Sisakian H, Booth TD, et al. Chemopreventive doses of resveratrol do not affect cardiac function in a rodent model of hepatocellular carcinoma. Invest New Drugs. 2010; in press. doi: 10.1007/s10637-009-9332-7.

  65. Karin M, Lin A. NF-kappaB at the crossroads of life and death. Nat Immunol. 2002;3:221–7.

    Article  PubMed  CAS  Google Scholar 

  66. Rahman MA, Dhar DK, Yamaguchi E, Maruyama S, Sato T, Hayashi H et al. Coexpression of inducible nitric oxide synthase and COX-2 in hepatocellular carcinoma and surrounding liver: possible involvement of COX-2 in the angiogenesis of hepatitis C virus-positive cases. Clin Cancer Res. 2001;7:1325–32.

    PubMed  CAS  Google Scholar 

  67. Calvisi DF, Pinna F, Ladu S, Pellegrino R, Muroni MR, Simile MM et al. Aberrant iNOS signaling is under genetic control in rodent liver cancer and potentially prognostic for the human disease. Carcinogenesis. 2008;29:1639–47.

    Article  PubMed  CAS  Google Scholar 

  68. Tazawa R, Xu XM, Wu KK, Wang LH. Characterization of the genomic structure, chromosomal location and promoter of human prostaglandin H synthase-2 gene. Biochem Biophys Res Commun. 1994;203:190–9.

    Article  PubMed  CAS  Google Scholar 

  69. Xie QW, Kashiwabara Y, Nathan C. Role of transcription factor NF-B/Rel in induction of nitric oxide synthase. J Biol Chem. 1994;269:4705–8.

    PubMed  CAS  Google Scholar 

  70. Ueno S, Aoki D, Kubo F, Hiwatashi K, Matsushita K, Oyama T et al. Roxithromyc inhibits constitutive activation of nuclear factor κB by diminishing oxidative stress in a rat model of hepatocellular carcinoma. Clin Cancer Res. 2005;11:5645–50.

    Article  PubMed  CAS  Google Scholar 

  71. Yang Z, Yang S, Misner BJ, Chiu R, Liu F, Meyskens FL. Nitric oxide initiates progression of human melanoma via a feedback loop mediated by apurinic/apyrimidinic endonuclease-1/redox factor-1, which is inhibited by resveratrol. Mol Cancer Ther. 2008;7:3751–60.

    Article  PubMed  CAS  Google Scholar 

  72. Kang O-H, Jang H-J, Chae H-S, Oh Y-C, Choi J-G, Lee Y-S et al. Anti-inflammatory mechanisms of resveratrol in activated HMC-1 cells: pivotal roles of NF-κB and MAPK. Pharmacol Res. 2009;59:330–7.

    Article  PubMed  CAS  Google Scholar 

  73. Cichocki M, Paluszczak J, Szaefer H, Piechowiak A, Rimando AM, Baer-Dubowska W. Pterostilbene is equally potent as resveratrol in inhibiting 12-O-tetradecanoylphorbol-13-acetate activated NFκB, AP-1, COX-2, and iNOS in mouse epidermis. Mol Nutr Food Res. 2008;52:S62–70.

    Article  PubMed  CAS  Google Scholar 

  74. Chávez E, Reyes-Gordillo K, Segovia J, Shibayama M, Tsutsumi V, Vergara P et al. Resveratrol prevents fibrosis, NF-κB activation and TGF-β increases by chronic CCl4 treatment in rats. J Appl Toxicol. 2008;28:35–43.

    Article  PubMed  CAS  Google Scholar 

  75. Holmes-McNary M, Baldwin Jr AS. Chemopreventive properties of trans-resveratrol are associated with inhibition of activation of the IkappaB kinase. Cancer Res. 2000;60:3477–83.

    PubMed  CAS  Google Scholar 

  76. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003;425:191–6.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by a Research Incentive Grant from Ohio Board of Regents, State of Ohio. The authors sincerely thank Cornelis Van der Schyf, D.Sc., DTE, for his constant support and encouragement, Howard P. Glauert, Ph.D., for helpful discussions, and Werner J. Geldenhuys, Ph.D., for technical assistance with the structure of resveratrol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupam Bishayee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bishayee, A., Waghray, A., Barnes, K.F. et al. Suppression of the Inflammatory Cascade is Implicated in Resveratrol Chemoprevention of Experimental Hepatocarcinogenesis. Pharm Res 27, 1080–1091 (2010). https://doi.org/10.1007/s11095-010-0144-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0144-4

KEY WORDS

Navigation