Skip to main content

Advertisement

Log in

Design and Evaluation of Histidine-Rich Amphipathic Peptides for siRNA Delivery

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Short linear peptides have a high potential for delivering various drugs with therapeutic potential, including nucleic acids. Recently, we have shown that the cationic amphipathic histidine-rich peptide LAH4 (KKALLALALHHLAHLALHLALALKKA) possesses high plasmid DNA delivery capacities. Since such peptides are thought to efficiently disrupt endosomal membranes, we have tested their ability to deliver small interfering RNA (siRNA) into mammalian cells.

Methods

Using a human cell line stably transfected with a luciferase-encoding expression vector, we have evaluated the ability of LAH4 and five derivatives thereof to deliver siRNAs and silence gene expression.

Results

The six peptides are all efficient siRNA delivery vehicles whose efficiency in mediating gene silencing in 911-Luc cells was greater than that of commercially available compounds including Lipofectamine, DOTAP and polyethylenimine. In addition, by using the proton pump inhibitor bafilomycin A1, we show that efficient siRNA delivery to the cytosol requires acidification of the endosomes.

Conclusions

The LAH4 histidine-rich cationic amphipathic peptides represent an interesting and promising family of compounds for siRNA delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Kim DH, Rossi JJ. Strategies for silencing human disease using RNA interference. Nat Rev Genet. 2007;8:173–84.

    Article  CAS  PubMed  Google Scholar 

  2. Dykxhoorn DM, Lieberman J. The silent revolution: RNA interference as basic biology, research tool, and therapeutic. Annu Rev Med. 2005;56:401–23.

    Article  CAS  PubMed  Google Scholar 

  3. Karagiannis TC, El-Osta A. RNA interference and potential therapeutic applications of short interfering RNAs. Cancer Gene Ther. 2005;12:787–95.

    Article  CAS  PubMed  Google Scholar 

  4. Dallas A, Vlassov AV. RNAi: A novel antisense technology and its therapeutic potential. Med Sci Monit. 2006;12:RA67–74.

    CAS  PubMed  Google Scholar 

  5. Barik S. Silence of the transcripts: RNA interference in medicine. J Mol Med. 2005;83:764–73.

    Article  CAS  PubMed  Google Scholar 

  6. Li SD, Huang L. Gene therapy progress and prospects: non-viral gene therapy by systemic delivery. Gene Ther. 2006;13:1313–9.

    Article  CAS  PubMed  Google Scholar 

  7. Kichler A, Leborgne C, Marz J, Danos O, Bechinger B. Histidine-rich amphipathic peptide antibiotics promote efficient delivery of DNA into mammalian cells. Proc Natl Acad Sci USA. 2003;100:1564–8.

    Article  CAS  PubMed  Google Scholar 

  8. Mason AJ, Martinez A, Glaubitz C, Danos O, Kichler A, Bechinger B. The antibiotic and DNA-transfecting peptide LAH4 selectively associates with, and disorders, anionic lipids in mixed membranes. FASEB J. 2006;20:320–2.

    CAS  PubMed  Google Scholar 

  9. Kichler A, Mason AJ, Bechinger B. Cationic amphipathic histidine-rich peptides for gene delivery. Biochim Biophys Acta. 2006;1758:301–7.

    Article  CAS  PubMed  Google Scholar 

  10. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Nature. 2001;411:494–8.

    Article  CAS  PubMed  Google Scholar 

  11. Caplen NJ, Parrish S, Imani F, Fire A, Morgan RA. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci USA. 2001;98:9742–7.

    Article  CAS  PubMed  Google Scholar 

  12. Kichler A, Leborgne C, Danos O, Bechinger B. Characterization of the gene transfer process mediated by histidine-rich peptides. J Molecular Med. 2007;85:191–201.

    Article  CAS  Google Scholar 

  13. Tossi A, Sandri L, Giangaspero A. New consensus hydrophobicity scale extended to non-proteinogenic amino acids. In Peptides 2002: Proceedings of the twenty-seventh European peptide symposium, Edizioni Ziino, Napoli, Italy. 2002, pp. 416–417.

  14. Bolcato-Bellemin AL, Bonnet ME, Creusat G, Erbacher P, Behr JP. Sticky overhangs enhance siRNA-mediated gene silencing. Proc Natl Acad Sci USA. 2007;104:16050–5.

    Article  CAS  PubMed  Google Scholar 

  15. Bouxsein NF, McAllister CS, Ewert KK, Samuel CE, Safinya CR. Structure and gene silencing activities of monovalent and pentavalent cationic lipid vectors complexed with siRNA. Biochemistry. 2007;46:4785–92.

    Article  CAS  PubMed  Google Scholar 

  16. Breunig M, Hozsa C, Lungwitz U, Watanabe K, Umeda I, Kato H et al. Mechanistic investigation of poly(ethylene imine)-based siRNA delivery: disulfide bonds boost intracellular release of the cargo. J Control Release. 2008;130:57–63.

    Article  CAS  PubMed  Google Scholar 

  17. Prongidi-Fix L, Sugawara M, Bertani P, Raya J, Leborgne C, Kichler A et al. Self-promoted cellular uptake of peptide/DNA transfection complexes. Biochemistry. 2007;46:11253–62.

    Article  CAS  PubMed  Google Scholar 

  18. Boussif O, Lezoualc'h F, Zanta MA, Mergny MD, Scherman D, Demeneix B et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA. 1995;92:7297–301.

    Article  CAS  PubMed  Google Scholar 

  19. Kichler A, Leborgne C, Coeytaux E, Danos O. Polyethylenimine-mediated gene delivery: a mechanistic study. J Gene Med. 2001;3:135–44.

    Article  CAS  PubMed  Google Scholar 

  20. Sonawane ND, Jr Szoka FC, Verkman AS. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J Biol Chem. 2003;278:44826–31.

    Article  CAS  PubMed  Google Scholar 

  21. Kichler A, Leborgne C, Danos O. Dilution of reporter gene with stuffer DNA does not alter the transfection efficiency of polyethylenimines. J Gene Med. 2005;7:1459–67.

    Article  CAS  PubMed  Google Scholar 

  22. Rhinn H, Largeau C, Bigey P, Kuen RL, Richard M, Scherman D et al. How to make siRNA lipoplexes efficient? Add a DNA cargo. Biochim Biophys Acta. 2009;790:219–30.

    Google Scholar 

  23. Simeoni F, Morris MC, Heitz F, Divita G. Insight into the mechanism of the peptide-based gene delivery system MPG: implications for delivery of siRNA into mammalian cells. Nucleic Acids Res. 2003;31:2717–24.

    Article  CAS  PubMed  Google Scholar 

  24. Crombez L, Aldrian-Herrada G, Konate K, Nguyen QN, McMaster GK, Brasseur R et al. A new potent secondary amphipathic cell-penetrating peptide for siRNA delivery into mammalian cells. Mol Ther. 2009;17:95–103.

    Article  CAS  PubMed  Google Scholar 

  25. Rittner K, Benavente A, Bompard-Sorlet A, Heitz F, Divita G, Brasseur R et al. New basic membrane-destabilizing peptides for plasmid-based gene delivery in vitro and in vivo. Mol Ther. 2002;5:104–14.

    Article  CAS  PubMed  Google Scholar 

  26. Midoux P, Monsigny M. Efficient gene transfer by histidylated polylysine/pDNA complexes. Bioconjug Chem. 1999;10:406–11.

    Article  CAS  PubMed  Google Scholar 

  27. Midoux P, Pichon C. J.J, Yaounac, and P.A, Jaffrès. Chemical vectors for gene delivery: a current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers. Br J Pharmacol. 2009;157:166–78.

    Article  CAS  PubMed  Google Scholar 

  28. Leng Q, Scaria P, Zhu J, Ambulos N, Campbell P, Mixson AJ. Highly branched HK peptides are effective carriers of siRNA. J Gene Med. 2005;7:977–86.

    Article  CAS  PubMed  Google Scholar 

  29. Yoshimori T, Yamamoto A, Moriyama Y, Futai M, Tashiro Y. Bafilomycin A1, a specific inhibitor of vacuolar-type H+-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J Biol Chem. 1991;266:17707–12.

    CAS  PubMed  Google Scholar 

  30. Bowman EJ, Siebers A, Altendorf K. Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci USA. 1988;85:7972–6.

    Article  CAS  PubMed  Google Scholar 

  31. Zintchenko A, Philipp A, Dehshahri A, Wagner E. Simple modifications of branched PEI lead to highly efficient siRNA carriers with low toxicity. Bioconjug Chem. 2008;19:1448–55.

    Article  CAS  PubMed  Google Scholar 

  32. Creusat G, Zuber G. Self-assembling polyethylenimine derivatives mediate efficient siRNA delivery in mammalian cells. Chembiochem. 2008;9:2787–9.

    Article  CAS  PubMed  Google Scholar 

  33. Mao S, Neu M, Germershaus O, Merkel O, Sitterberg J, Bakowsky U et al. Influence of polyethylene glycol chain length on the physicochemical and biological properties of poly(ethylene imine)-graft-poly(ethylene glycol) block copolymer/SiRNA polyplexes. Bioconjug Chem. 2006;17:1209–18.

    Article  CAS  PubMed  Google Scholar 

  34. Gary DJ, Puri N, Won YY. Polymer-based siRNA delivery: perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery. J Control Release. 2007;121:64–73.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENT

This work was performed with the financial support of Vaincre la Mucoviscidose (VLM), the Association Française contre les Myopathies (AFM), ANR Transpep (PCV07_186700) and the Wellcome Trust (VIP award to AJM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Kichler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langlet-Bertin, B., Leborgne, C., Scherman, D. et al. Design and Evaluation of Histidine-Rich Amphipathic Peptides for siRNA Delivery. Pharm Res 27, 1426–1436 (2010). https://doi.org/10.1007/s11095-010-0138-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0138-2

KEY WORDS

Navigation