Skip to main content

Advertisement

Log in

Enhanced Bioavailability of L-Carnitine After Painless Intradermal Delivery vs. Oral Administration in Rats

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

In vitro and in vivo permeation studies were conducted to evaluate the characteristic of percutaneous administration of high hydrophilic drug L-carnitine (LC) by Functional MicroArray (FMA) painless intradermal delivery system.

Methods

In vitro study was designed to assess the effects of various skins, donor concentration and hydrogels from different carbomer derivatives on the release of LC in a Franz-type diffusion cell. The LC gel patches with carbomer 980 P were prepared and successfully applied to pharmacokinetic study of SD rats with and without FMA. Intravenous injection and oral administration were performed to support pharmacokinetic calculations and comparison of bioavailability.

Results

Enhanced delivery of LC using FMA was achieved in skin of different species in vitro studies. The 750 mg LC gel patches were applied to rats over 6 h, and approximately 27% of loaded dose was transported into rat. A 2.8-fold enhancement of absolute bioavailability for LC with FMA intradermal delivery system was observed compared with oral LC administration in vivo study.

Conclusions

Both in vitro and in vivo studies demonstrated that the FMA intradermal delivery system can enhance the delivery and bioavailability of LC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. Sharma S, Black SM. Carnitine homeostasis, mitochondrial function and cardiovascular disease. Drug Discovery Today: Disease Mechanisms in Press, corrected Proof (2009).

  2. Gvozdjáková A. Carnitine. In: Gvozdjáková A, editor. Mitochondrial Medicine. Netherlands: Springer Netherlands; 2008. p. 357–66.

    Chapter  Google Scholar 

  3. Pons R, De Vivo DC. Primary and secondary carnitine deficiency syndromes. J Child Neurol. 1995;10:S8–24.

    PubMed  Google Scholar 

  4. Jusić A. Carnitine: physiologic role, primary and secondary deficiency. Lijec Vjesn. 1992;114:166–71.

    PubMed  Google Scholar 

  5. Michael AA. Carnitine and its derivatives in cardiovascular disease. Prog Cardiovasc Dis. 1997;40:265–86.

    Article  Google Scholar 

  6. Ilias I, Manoli I, Blackman MR, Gold PW, Alesci S. L-Carnitine and acetyl-L-carnitine in the treatment of complications associated with HIV infection and antiretroviral therapy. Mitochondrion 2004;4:163–8.

    Article  CAS  PubMed  Google Scholar 

  7. Brass EP, Hoppel CL, Hiatt WR. Effect of intravenous L-carnitine on carnitine homeostasis and fuel metabolism during exercise in humans. Clin Pharmacol Ther. 1994;55:681–92.

    Article  CAS  PubMed  Google Scholar 

  8. Wutzke KD, Lorenz H. The effect of l-carnitine on fat oxidation, protein turnover, and body composition in slightly overweight subjects. Metabolism 2004;53:1002–6.

    Article  CAS  PubMed  Google Scholar 

  9. Chang B, Nishikawa M, Nishiguchi S, Inoue M. L-carnitine inhibits hepatocarcinogenesis via protection of mitochondria. Int J Cancer 2005;113:719–29.

    Article  CAS  PubMed  Google Scholar 

  10. Ahmad S. L-carnitine in dialysis patients. Semin Dialysis 2001;14:209–17.

    Article  CAS  Google Scholar 

  11. Costa M, Canale D, Filicori M, D’Lddio S, Lenzi A. L-carnitine in idiopathic asthenozoospermia: a multicenter study. Andrologia 1994;26:155–9.

    Article  CAS  PubMed  Google Scholar 

  12. Mingrone G, Greco AV, Capristo E, Benedetti G, Giancaterini A, De Gaetano A, et al. L-carnitine improves glucose disposal in type 2 diabetic patients. J Am Coll Nutr. 1999;18:77–82.

    CAS  PubMed  Google Scholar 

  13. Evans AM, Fornasini G. Pharmacokinetics of L-carnitine. Clin Pharmacokinet. 2003;42:941–67.

    Article  CAS  PubMed  Google Scholar 

  14. Gudjonsson H, Li BU, Shug AL, Olsen WA. Studies of carnitine metabolism in relation to intestinal absorption. Am J Physiol. 1985;248:G313–9.

    CAS  PubMed  Google Scholar 

  15. Rebouche CJ, Mack DL, Edmonson PF. L-Carnitine dissimilation in the gastrointestinal tract of the rat. Biochemistry 1984;23:6422–6.

    Article  CAS  PubMed  Google Scholar 

  16. Harper P, Elwin CE, Cederblad G. Pharmacokinetics of bolus intravenous and oral doses of L-carnitine in healthy subjects. Eur J Clin Pharmacol. 1988;35:69–75.

    Article  CAS  PubMed  Google Scholar 

  17. Brass EP. Pharmacokinetic considerations for the therapeutic use of carnitine in hemodialysis patients. Clin Ther. 1995;17:176–85.

    Article  CAS  PubMed  Google Scholar 

  18. Schulz J, Kroepke R, Schepky A, Eckert J, Koop U, Faenger S. Cosmetic combination product for improving appearance. U.S. Patent 11, 839, 384, Aug. 28, 2008.

  19. Madison Metabolomics Consortium Database, (http://mmcd.nmrfam.wisc.edu/test/cqsearch.py?cqid=cq_09878) (assessed 10/01/09).

  20. Haq MI, Smith E, John DN, Kalavala M, Edwards C, Anstey A, et al. Clinical administration of microneedles: skin puncture, pain and sensation. Biomed Microdevices 2009;11:35–47.

    Article  CAS  PubMed  Google Scholar 

  21. Xie Y, Xu B, Gao Y. Controlled transdermal delivery of model drug compounds by MEMS microneedle array. Nanomedicine 2005;1:184–90.

    CAS  PubMed  Google Scholar 

  22. Qiu Y, Gao Y, Hu K, Li F. Enhancement of skin permeation of docetaxel: a novel approach combining microneedle and elastic liposomes. J Control Release 2008;129:144–50.

    Article  CAS  PubMed  Google Scholar 

  23. Wu Y, Qiu Y, Zhang S, Qin G, Gao Y. Microneedle-based drug delivery: studies on delivery parameters and biocompatibility. Biomed Microdevices 2008;10:601–10.

    Article  CAS  PubMed  Google Scholar 

  24. Li X, Zhao R, Qin Z, Zhang J, Zhai S, Qiu Y, et al. Microneedle pretreatment improves efficacy of cutaneous topical anesthesia. Am J Emerg Med. doi:10.1016/j.ajem.2008.10.001.

  25. Kanikkannan N, Singh J, Ramarao P. Transdermal iontophoretic transport of timolol maleate: effect of age and species. J Control Release 2001;71:99–105.

    Article  CAS  PubMed  Google Scholar 

  26. van der Geest R, Danhof M, Bodde HE. Iontophoretic delivery of apomorphine. I: In Vitro optimization and validation. Pharm Res. 1997;14:1798–803.

    Article  PubMed  Google Scholar 

  27. Stinchcomb AL, Banks SL. Methods and compositions for enhancing the viability of microneedle pores. U.S. Patent 12, 325, 919, Jun. 4, 2009.

  28. Li G, Badkar A, Nema S, Kolli CS, Banga AK. In Vitro transdermal delivery of therapeutic antibodies using maltose microneedles. Int J Pharm. 2009;368:109–15.

    Article  CAS  PubMed  Google Scholar 

  29. Macedo T, Block LH, Shukla AJ. Release of tolmetin from carbomer gel systems. Drug Dev Ind Pharm. 1993;19:887–902.

    Article  CAS  Google Scholar 

  30. Ceulemans J, Ludwig A. Optimisation of carbomer viscous eye drops: an In Vitro experimental design approach using rheological techniques. Eur J Pharm Biopharm. 2002;54:41–50.

    Article  CAS  PubMed  Google Scholar 

  31. Matsuda K, Yuasa H, Watnabe J. Physiological mechanism-based analysis of dose-dependentgastrointestinal absorption of L-carnitine in rats. Biopharm Drug Dispos. 1998;19:465–72.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The work was partly supported by Suzhou Natong Bionanotechnology Co. Ltd., Jiangsu, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunhua Gao or Bai Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S., Qin, G., Wu, Y. et al. Enhanced Bioavailability of L-Carnitine After Painless Intradermal Delivery vs. Oral Administration in Rats. Pharm Res 28, 117–123 (2011). https://doi.org/10.1007/s11095-010-0109-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0109-7

KEY WORDS

Navigation