Skip to main content

Advertisement

Log in

Physiological Modeling to Understand the Impact of Enzymes and Transporters on Drug and Metabolite Data and Bioavailability Estimates

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To obtain mathematical solutions that correlate drug and metabolite exposure and systemic bioavailability (F sys) with physiological determinants, transporters and enzymes.

Methods

A series of physiologically-based pharmacokinetic (PBPK) models that included renal excretion and sequential metabolism within the intestine and/or liver as metabolite formation organs were developed. The area under the curve for drug (AUC) and formed metabolite (AUC{mi,P}) were solved by matrix inversion.

Results

The PBPK models revealed that AUC{mi,P} was dependent on dispositional parameters (transport and elimination) for the drug and metabolite. The solution was unique for each metabolite formation organ and was dependent on the type of drug and metabolite elimination organs. The AUC ratio of the formed metabolite after oral and intravenous drug dosing was useful for determination of the fraction absorbed (F abs) and not the systemic bioavailability (F sys) when either intestine or liver was the only drug elimination organ.

Conclusions

The AUC ratio of the formed metabolite after oral and intravenous drug dosing differed from that for drug and would not provide F sys. However, the AUC ratio of the formed metabolite for oral and intravenous drug dosing furnished the estimate of F abs when intestine or liver was the only drug metabolic organ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Löbenberg R, Amidon GL. Modern bioavailability, bioequivalence and biopharmaceutics classification system. New scientific approaches to international regulatory standards. Eur J Pharm Biopharm. 2000;50:3–12.

    Article  PubMed  Google Scholar 

  2. Rowland M. Infuence of route of administration on drug bioavailability. J Pharm Sci. 1972;61:70–4.

    Article  CAS  PubMed  Google Scholar 

  3. Wagner JG. An overview of the analysis and interpretation of bioavailability studies in man. Pharmacology. 1972;8:102–17.

    Article  CAS  PubMed  Google Scholar 

  4. Koch-Weser J. Bioavailability of drugs (first of two parts). N Engl J Med. 1974;291:233–7.

    Article  CAS  PubMed  Google Scholar 

  5. Koch-Weser J. Bioavailability of drugs (second of two parts). N Engl J Med. 1974;291:503–6.

    Article  CAS  PubMed  Google Scholar 

  6. Riegelman S, Rowland M. Effect of route of administration on drug disposition. J Pharmacokinet Biopharm. 1973;1:419–34.

    Article  CAS  PubMed  Google Scholar 

  7. Rescigno A. Area under the curve and bioavailability. Pharmacol Res. 2000;42:539–40.

    Article  CAS  PubMed  Google Scholar 

  8. Cornaire G, Woodley J, Hermann P, Cloarec A, Arellano C, Houin G. Impact of excipients on the absorption of P-glycoprotein substrates in vitro and in vivo. Int J Pharm. 2004;278:119–31.

    Article  CAS  PubMed  Google Scholar 

  9. Batrakova E, Lee S, Li S, Venne A, Alakhov V, Kabanov A. Fundamental relationships between the composition of pluronic block copolymers and their hypersensitization effect in MDR cancer cells. Pharm Res. 1999;16:1373–9.

    Article  CAS  PubMed  Google Scholar 

  10. Minko T, Batrakova EV, Li S, Li Y, Pakunlu RI, Alakhov VY, et al. Pluronic block copolymers alter apoptotic signal transduction of doxorubicin in drug-resistant cancer cells. J Control Release. 2005;105:269–78.

    Article  CAS  PubMed  Google Scholar 

  11. Johnson BM, Charman WN, Porter CJ. An in vitro examination of the impact of polyethylene glycol 400, Pluronic P85, and vitamin E D-alpha-tocopheryl polyethylene glycol 1000 succinate on P-glycoprotein efflux and enterocyte-based metabolism in excised rat intestine. AAPS PharmSci. 2002;4:E40.

    Article  PubMed  Google Scholar 

  12. Kabanov AV, Batrakova EV, Alakhov VY. An essential relationship between ATP depletion and chemosensitizing activity of Pluronic block copolymers. J Control Release. 2003;91:75–83.

    Article  CAS  PubMed  Google Scholar 

  13. Hugger ED, Novak BL, Burton PS, Audus KL, Borchardt RT. A comparison of commonly used polyethoxylated pharmaceutical excipients on their ability to inhibit P-glycoprotein activity in vitro. J Pharm Sci. 2002;91:1991–2002.

    Article  CAS  PubMed  Google Scholar 

  14. Shono Y, Nishihara H, Matsuda Y, Furukawa S, Okada N, Fujita T, et al. Modulation of intestinal P-glycoprotein function by cremophor EL and other surfactants by an in vitro diffusion chamber method using the isolated rat intestinal membranes. J Pharm Sci. 2004;93:877–85.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang H, Yao M, Morrison RA, Chong S. Commonly used surfactant, Tween 80, improves absorption of P-glycoprotein substrate, digoxin, in rats. Arch Pharm Res. 2003;26:768–72.

    Article  CAS  PubMed  Google Scholar 

  16. Cornaire G, Woodley JF, Saivin S, Legendre JY, Decourt S, Cloarec A, et al. Effect of polyoxyl 35 castor oil and Polysorbate 80 on the intestinal absorption of digoxin in vitro. Arzneimittelforschung. 2000;50:576–9.

    CAS  PubMed  Google Scholar 

  17. Risovic V, Sachs-Barrable K, Boyd M, Wasan KM. Potential mechanisms by which Peceol increases the gastrointestinal absorption of amphotericin B. Drug Dev Ind Pharm. 2004;30:767–74.

    Article  CAS  PubMed  Google Scholar 

  18. Hugger ED, Audus KL, Borchardt RT. Effects of poly(ethylene glycol) on efflux transporter activity in Caco-2 cell monolayers. J Pharm Sci. 2002;91:1980–90.

    Article  CAS  PubMed  Google Scholar 

  19. Collnot EM, Baldes C, Wempe MF, Hyatt J, Navarro L, Edgar KJ, et al. Influence of vitamin E TPGS poly(ethylene glycol) chain length on apical efflux transporters in Caco-2 cell monolayers. J Control Release. 2006;111:35–40.

    Article  CAS  PubMed  Google Scholar 

  20. Rege BD, Kao JP, Polli JE. Effects of nonionic surfactants on membrane transporters in Caco-2 cell monolayers. Eur J Pharm Sci. 2002;16:237–46.

    Article  CAS  PubMed  Google Scholar 

  21. Sancho-Chust V, Fabra-Campos S, Gomez-Meseguer V, Bengochea M, Martin-Villodre A. Experimental studies on the influence of surfactants on intestinal absorption of drugs. Cefadroxil as model drug and sodium lauryl sulfate as model surfactant: studies in rat colon. Arzneimittelforschung. 1995;45:595–601.

    CAS  PubMed  Google Scholar 

  22. Kim IW, Yoo HJ, Song IS, Chung YB, Moon DC, Chung SJ, et al. Effect of excipients on the stability and transport of recombinant human epidermal growth factor (rhEGF) across Caco-2 cell monolayers. Arch Pharm Res. 2003;26:330–7.

    Article  CAS  PubMed  Google Scholar 

  23. Kotze AF, Luessen HL, de Leeuw BJ, de Boer BG, Verhoef JC, Junginger HE. N-trimethyl chitosan chloride as a potential absorption enhancer across mucosal surfaces: in vitro evaluation in intestinal epithelial cells (Caco-2). Pharm Res. 1997;14:1197–202.

    Article  CAS  PubMed  Google Scholar 

  24. van der Merwe SM, Verhoef JC, Verheijden JH, Kotze AF, Junginger HE. Trimethylated chitosan as polymeric absorption enhancer for improved peroral delivery of peptide drugs. Eur J Pharm Biopharm. 2004;58:225–35.

    Article  PubMed  CAS  Google Scholar 

  25. Bittner B, Bravo González RC, Walter I, Kappas M, Huwyler J. Impact of Solutol HS 15 on the pharmacokinetic behaviour of colchicine upon intravenous administration to male Wistar rats. Biopharm Drug Dispos. 2004;25:37–49.

    Article  PubMed  CAS  Google Scholar 

  26. Smith NF, Acharva MR, Desai N, Figg WD, Sparreboom A. Identification of OATP1B3 as a high-affinity hepatocellular transporter of paclitaxel. Cancer Biol Ther. 2005;4:815–8.

    CAS  PubMed  Google Scholar 

  27. Bravo González RC, Huwyler J, Boess F, Walter I, Bittner B. In vitro investigation on the impact of the surface-active excipients Cremophor EL, Tween 80 and Solutol HS 15 on the metabolism of midazolam. Biopharm Drug Dispos. 2004;25:37–49.

    Article  PubMed  CAS  Google Scholar 

  28. Ren X, Mao X, Si L, Cao L, Xiong H, Qiu J, et al. Pharmaceutical excipients inhibit cytochrome P450 activity in cell free systems after systemic administration. Eur J Pharm Biopharm. 2008;70:279–88.

    Article  CAS  PubMed  Google Scholar 

  29. FDA Guidance for Industry. Bioavailability and bioequivalence studies for orally administered drug products—general considerations. US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), March 2003.

  30. Rosenblum SE, Lam J. Bioequivalence parameters of parent drug and its first-pass metabolite: comparative sensitivity to sources of pharmacokinetic variability. Drug Dev Ind Pharm. 1997;23:237–344.

    Google Scholar 

  31. Jackson AJ. The role of metabolites in bioequivalency assessment. III. Highly variable drugs with linear kinetics and first pass effect. Pharm Res. 2000;17:1432–6.

    Article  CAS  PubMed  Google Scholar 

  32. Tucker G, Rostami A, Jackson P. Metabolite measurements in bioequivalence studies. Theoretical considerations. In: Midha KK, Blume HH, editors. Bio-International: bioavailability, bioequivalence and pharmacokinetics. Stuttgart: Medpharm Scientific Publishers; 1992. p. 163–70.

    Google Scholar 

  33. Midha KK, Rawson MJ, Hubbard JW. Commentary. The role of metabolites in bioequivalence. Pharm Res. 2004;21:1331–4.

    Article  CAS  PubMed  Google Scholar 

  34. Pang KS, Morris ME, Sun H. Formed and preformed metabolite: Facts and comparisons. J Pharm Pharmacol. 2008;60:1247–75.

    Article  CAS  PubMed  Google Scholar 

  35. Chen M-L, Jackson AJ. The role of metabolites in bioequivalency assessment. I. linear pharmacokinetics without first pass effect. Pharm Res. 1991;8:25–32.

    Article  CAS  PubMed  Google Scholar 

  36. Chen M-L, Jackson AJ. The role of metabolites in bioequivalency assessment. II. Drugs with linear pharmacokinetics and first-pass effect. Pharm Res. 1995;12:700–8.

    Article  CAS  PubMed  Google Scholar 

  37. Sun H, Pang KS. Disparity in intestine disposition between formed and preformed metabolites and implications: A theoretical study. Drug Metab Dispos. 2009;37:187–202.

    Article  CAS  PubMed  Google Scholar 

  38. Pang KS. Modeling of intestinal drug absorption: roles of transporters and metabolic enzymes (for the Gillette Review Series). Drug Metab Dispos. 2003;31:1507–19.

    Article  CAS  PubMed  Google Scholar 

  39. Kwan KC. Oral bioavailability and first-pass effects. Drug Metab Dispos. 1997;25:1329–35.

    CAS  PubMed  Google Scholar 

  40. Yamazaki S, Toth LN, Kimoto E, Bower J, Skaptason J, Romero D, et al. Application of stable isotope methodology in the evaluation of the pharmacokinetics of (S, S)-3-(3-(methylsulfonyl)phenyl)-1-propylpiperidine hydrochloride in rats. Drug Metab Dispos. 2009;37:937–45.

    Article  CAS  PubMed  Google Scholar 

  41. Peters SA. Identification of intestinal loss of a drug through physiologically based pharmacokinetic simulation of plasma concentration-time profiles. Clin Pharmacokinet. 2008;47:245–59.

    Article  CAS  PubMed  Google Scholar 

  42. Pang KS, Gillette JR. Sequential first-pass elimination of a metabolite derived from a precursor. J Pharmacokinet Biopharm. 1979;7:275–90.

    Article  CAS  PubMed  Google Scholar 

  43. Weiss M. A general model of metabolite kinetics following intravenous and oral administration of the parent drug. Biopharm Drug Dispos. 1988;9:159–76.

    Article  CAS  PubMed  Google Scholar 

  44. Weiss M. Use of metabolite AUC data in bioavailability studies to discriminate between absorption and first-pass extraction. Clin Pharmacokinet. 1990;18:419–22.

    Article  CAS  PubMed  Google Scholar 

  45. Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res. 1993;10:1093–5.

    Article  CAS  PubMed  Google Scholar 

  46. Dyke TM, Hubbell JA, Sams RA, Hinchcliff KW. Hepatic blood flow in horses during the recuperative period from maximal exercise. Am J Vet Res. 1998;59:1476–80.

    CAS  PubMed  Google Scholar 

  47. Shayeganpour A, Hamdy DA, Brocks DR. Pharmacokinetics of desethylamiodarone in the rat after its administration as the preformed metabolite, and after administration of amiodarone. Biopharm Drug Dispos. 2008;29:159–66.

    Article  CAS  PubMed  Google Scholar 

  48. Peyrou M, Bousquet-Melou A, Laroute V, Vrins A, Doucet MY. Enrofloxacin and marbofloxacin in horses: comparison of pharmacokinetic parameters, use of urinary and metabolite data to estimate first-pass effect and absorbed fraction. J Vet Pharmacol Ther. 2006;29:337–44.

    Article  CAS  PubMed  Google Scholar 

  49. Bennett PN, Aarons LJ, Bending MR, Steiner JA, Rowland M. Pharmacokinetics of lidocaine and its deethylated metabolite: dose and time dependency studies in man. J Pharmacokinet Biopharm. 1982;10:265–81.

    Article  CAS  PubMed  Google Scholar 

  50. Lê KT, Maurice H, du Souich P. First-pass metabolism of lidocaine in the anesthetized rabbit. Contribution of the small intestine. Drug Metab Dispos. 1996;24:711–6.

    PubMed  Google Scholar 

  51. Hajda JP, Jähnchen E, Øie S, Trenk D. Sequential first-pass metabolism of nortilidine: the active metabolite of the synthetic opioid drug tilidine. J Clin Pharmacol. 2002;42:1257–61.

    Article  CAS  PubMed  Google Scholar 

  52. Lo MW, Goldberg MR, McCrea JB, Lu H, Furtek CI, Bjornsson TD. Pharmacokinetics of losartan, an angiotensin II receptor antagonist, and its active metabolite EXP3174 in humans. Clin Pharmacol Ther. 1995;58:641–9.

    Article  CAS  PubMed  Google Scholar 

  53. Lindberg RL, Syvälahti EK. Metabolism of nomifensine after oral and intravenous administration. Clin Pharmacol Ther. 1986;39:378–83.

    CAS  PubMed  Google Scholar 

  54. Lindberg RL, Syvälahti EK, Pihlajamäki KK. Disposition of nomifensine after acute and prolonged dosing. Clin Pharmacol Ther. 1986;39:384–8.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the Canadian Institutes for Heath Research, MOP89850.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sandy Pang.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Case 1

Matrix for Case 1 (JPG 1.05 MB)

Case 2

Matrix for Case 2 (JPG 882 KB)

Case 3

Matrix for Case 3 (JPG 2.19 MB)

Case 4

Matrix for Case 4 (JPG 1.20 MB)

Appendix

Appendix

Mass balance equations and the corresponding matrices for the physiologically based pharmacokinetic model (case 1 to case 4, as shown in Figs. 1, 2 and 3)

Q:

blood flow rate

V:

blood or tissue volume

P:

parent drug

Mi:

the primary metabolite of interest

SB:

systemic blood, used as subscripts

HP:

highly perfused organ, used as subscript

PP:

poorly perfused organ, used as subscript

Intb:

intestinal blood, used as subscript

Int:

intestinal tissue, used as subscript

Lumen:

intestinal lumen, used as subscript

LB:

liver blood, used as subscript

L:

liver tissue, used as subscript

PV:

portal vein, used as subscript

HA:

hepatic artery, used as subscript

CLr, CLr{mi}:

apparent renal clearances of the parent drug and the metabolite, Mi, respectively

\( {{CL}}_{\rm{d1}}^{\rm{I}}{,}{\kern 1pt} {{CL}}_{\rm{d2}}^{\rm{I}}{\kern 1pt} {\kern 1pt} \) :

basolateral influx and efflux clearances of enterocytes, respectively

CLint,met1,I :

metabolic intrinsic clearance for formation of the Mi in the intestinal tissue

CLint,met2,I :

metabolic intrinsic clearance for formation of other metabolites in the intestinal tissue

CLint,sec,I :

secretory intrinsic clearance for drug in the intestinal tissue

ka :

rate constant of drug absorption in the intestine

kg :

rate constant of intestinal transit and degradation

\( {{CL}}_{\rm{d1}}^{\rm{H}}{,}{\kern 1pt} {{CL}}_{\rm{d2}}^{\rm{H}}{\kern 1pt} {\kern 1pt} \) :

basolateral influx and efflux clearances of the hepatocyte, respectively

CLint,met1,H :

metabolic intrinsic clearance for formation of the metabolite of interest in liver

CLint,met2,H :

metabolic intrinsic clearance for formation of other metabolites in the liver

CLint,sec,I :

secretory intrinsic clearance of drug in the liver

{mi} and {mii}:

symbols used to qualify the parameters for primary metabolites formed in intestine and other primary metabolite formed in liver for case 3

  1. (1)

    Case 1 (see Fig. 1 for the model scheme)

In systemic blood (denoted by the subscript, SB),

$$ {{{V}}_{\rm{SB}}}\frac{{{\text{d}}{{\text{P}}_{\rm{SB}}}}}{{dt}} = {{{Q}}_{\rm{HP}}}\frac{{{{\text{P}}_{\rm{HP}}}}}{{{{{K}}_{\rm{HP}}}}} + {{{Q}}_{\rm{PP}}}\frac{{{{\text{P}}_{\rm{PP}}}}}{{{{{K}}_{\rm{PP}}}}} + \left( {{{{Q}}_{\rm{HA}}} + {{{Q}}_{\rm{PV}}}} \right){{{P}}_{\rm{LB}}} - \left( {{{C}}{{{L}}_{\rm{r}}} + {{{Q}}_{\rm{HP}}} + {{{Q}}_{\rm{PP}}} + {{{Q}}_{\rm{HA}}} + {{{Q}}_{\rm{PV}}}} \right){{{P}}_{\rm{SB}}} $$
(1)
$$ {{{V}}_{\rm{SB}}}\frac{{{\text{dM}}{{\text{i}}_{\rm{SB}}}}}{{dt}} = {{{Q}}_{\rm{HP}}}\frac{{{\text{M}}{{\text{i}}_{\rm{HP}}}}}{{{{{K}}_{\rm{HP}}}\left\{ {{mi}} \right\}}} + {{{Q}}_{\rm{PP}}}\frac{{{\text{M}}{{\text{i}}_{\rm{PP}}}}}{{{{{K}}_{\rm{PP}}}\left\{ {{mi}} \right\}}} + \left( {{{{Q}}_{\rm{HA}}} + {{{Q}}_{\rm{PV}}}} \right){{M}}{{{i}}_{\rm{LB}}} - {\kern 1pt} \left( {{{C}}{{{L}}_{\rm{r}}}\left\{ {{mi}} \right\} + {{{Q}}_{\rm{HP}}} + {{{Q}}_{\rm{PP}}} + {{{Q}}_{\rm{HA}}} + {{{Q}}_{\rm{PV}}}} \right){{M}}{{{i}}_{\rm{SB}}} $$
(2)

In highly perfused organs (denoted by the subscript, HP),

$$ {{{V}}_{\rm{HP}}}\frac{{{\text{d}}{{\text{P}}_{\rm{HP}}}}}{{dt}} = {{{Q}}_{\rm{HP}}}\left( {{{{P}}_{\rm{SB}}} - \frac{{{{\text{P}}_{\rm{HP}}}}}{{{{{K}}_{\rm{HP}}}}}} \right) $$
(3)
$$ {{{V}}_{\rm{HP}}}\frac{{{\text{dM}}{{\text{i}}_{\rm{HP}}}}}{{dt}} = {{{Q}}_{\rm{HP}}}\left( {{{M}}{{{i}}_{\rm{SB}}} - {\kern 1pt} \,\frac{{{\text{M}}{{\text{i}}_{\rm{HP}}}}}{{{{{K}}_{\rm{HP}}}\left\{ {{mi}} \right\}}}} \right) $$
(4)

In poorly perfused organs (denoted by the subscript, PP),

$$ {{{V}}_{\rm{PP}}}\frac{{{\text{d}}{{\text{P}}_{\rm{PP}}}}}{{dt}} = {{{Q}}_{\rm{PP}}}\left( {{{{P}}_{\rm{SB}}} - \frac{{{{\text{P}}_{\rm{PP}}}}}{{{{{K}}_{\rm{PP}}}}}} \right) $$
(5)
$$ {{{V}}_{\rm{PP}}}\frac{{{\text{dM}}{{\text{i}}_{\rm{PP}}}}}{{dt}} = {{{Q}}_{\rm{PP}}}\left( {{{M}}{{{i}}_{\rm{SB}}} - \frac{{{\text{M}}{{\text{i}}_{\rm{PP}}}}}{{{{{K}}_{\rm{PP}}}\left\{ {{mi}} \right\}}}} \right) $$
(6)

In intestinal blood (denoted by the subscript, Intb),

$$ {{{V}}_{\rm{Intb}}}\frac{{{\text{d}}{{\text{P}}_{\rm{Intb}}}}}{{dt}} = {{{Q}}_{\rm{PV}}}{{{P}}_{\rm{SB}}} + {{CL}}_{\rm{d2}}^{\rm{I}}{{{P}}_{\rm{Int}}} - \left( {{{{Q}}_{\rm{PV}}} + {{CL}}_{\rm{d1}}^{\rm{I}}} \right){{{P}}_{\rm{Intb}}} $$
(7)
$$ {{{V}}_{\rm{Intb}}}\frac{{{\text{dM}}{{\text{i}}_{\rm{Intb}}}}}{{dt}} = {{{Q}}_{\rm{PV}}}{{M}}{{{i}}_{\rm{SB}}} + {{CL}}_{\rm{d2}}^{\rm{I}}\left\{ {{mi}} \right\}{{M}}{{{i}}_{\rm{Int}}} - \left( {{{{Q}}_{\rm{PV}}} + {{CL}}_{\rm{d1}}^{\rm{I}}\left\{ {{mi}} \right\}} \right){{M}}{{{i}}_{\rm{Intb}}} $$
(8)

In intestinal tissue (denoted by the subscript, Int),

$$ {{{V}}_{\rm{Int}}}\frac{{{\text{d}}{{\text{P}}_{\rm{Int}}}}}{{dt}} = {{CL}}_{\rm{d1}}^{\rm{I}}{{{P}}_{\rm{Intb}}} + {{{k}}_{\rm{a}}}{{{P}}_{\rm{lumen}}}{{{V}}_{\rm{lumen}}} - {\kern 1pt} \left( {{{CL}}_{\rm{d2}}^{\rm{I}} + {{C}}{{{L}}_{{\rm{int,met1,I}}}} + {{C}}{{{L}}_{{\rm{int,met2,I}}}} + {{C}}{{{L}}_{{\rm{int,sec,I}}}}} \right){{{P}}_{\rm{Int}}} $$
(9)
$$ {{{V}}_{\rm{Int}}}\frac{{{\text{dM}}{{\text{i}}_{\rm{Int}}}}}{{dt}} = {{CL}}_{\rm{d1}}^{\rm{I}}\left\{ {{mi}} \right\}{{M}}{{{i}}_{\rm{Intb}}} + {{{k}}_{\rm{a}}}\left\{ {{mi}} \right\}{{M}}{{{i}}_{\rm{lumen}}}{{{V}}_{\rm{lumen}}} + {{C}}{{{L}}_{{\rm{int,met1,I}}}}{{{P}}_{\rm{Int}}} - \left( {{{CL}}_{\rm{d2}}^{\rm{I}}\left\{ {{mi}} \right\} + {{C}}{{{L}}_{{\rm{int,met,I}}}}\left\{ {{mi}} \right\} + {{C}}{{{L}}_{{\rm{int,sec,I}}}}\left\{ {{mi}} \right\}} \right){{M}}{{{i}}_{\rm{Int}}} $$
(10)

In intestinal lumen (denoted by the subscript, lumen),

$$ {{{V}}_{\rm{lumen}}}\frac{{{\text{d}}{{\text{P}}_{\rm{lumen}}}}}{{dt}} = {{C}}{{{L}}_{{\rm{int,sec,I}}}}{{{P}}_{\rm{Int}}} - \left( {{{{k}}_{\rm{a}}} + {{{k}}_{\rm{g}}}} \right){{{P}}_{\rm{lumen}}}{{{V}}_{\rm{lumen}}} $$
(11)
$$ {{{V}}_{\rm{lumen}}}\frac{{{\text{dM}}{{\text{i}}_{\rm{lumen}}}}}{{dt}} = {{C}}{{{L}}_{{\rm{int,sec,I}}}}\left\{ {{mi}} \right\}{{M}}{{{i}}_{\rm{Int}}} - \left( {{{{k}}_{\rm{a}}}\left\{ {{mi}} \right\} + {{{k}}_{\rm{g}}}\left\{ {{mi}} \right\}} \right){{M}}{{{i}}_{\rm{lumen}}}{{{V}}_{\rm{lumen}}} $$
(12)

In liver blood (denoted by the subscript, LB),

$$ {{{V}}_{\rm{LB}}}\frac{{{\text{d}}{{\text{P}}_{\rm{LB}}}}}{{dt}} = {{{Q}}_{\rm{PV}}}{{{P}}_{\rm{Intb}}} + {{{Q}}_{\rm{HA}}}{{{P}}_{\rm{SB}}} + {{CL}}_{\rm{d2}}^{\rm{H}}{{{P}}_{\rm{L}}} - \left( {{{{Q}}_{\rm{PV}}} + {{{Q}}_{\rm{HA}}} + {{CL}}_{\rm{d1}}^{\rm{H}}} \right){{{P}}_{\rm{LB}}} $$
(13)
$$ {{{V}}_{\rm{LB}}}\frac{{{\text{dM}}{{\text{i}}_{\rm{LB}}}}}{{dt}} = {{{Q}}_{\rm{PV}}}{{M}}{{{i}}_{\rm{Intb}}} + {{{Q}}_{\rm{HA}}}{{M}}{{{i}}_{\rm{SB}}} + {{CL}}_{\rm{d2}}^{\rm{H}}\left\{ {{mi}} \right\}{{M}}{{{i}}_{\rm{L}}} - \left( {{{{Q}}_{\rm{PV}}} + {{{Q}}_{\rm{HA}}} + {{CL}}_{\rm{d1}}^{\rm{H}}\left\{ {{mi}} \right\}} \right){{M}}{{{i}}_{\rm{LB}}} $$
(14)

In liver tissue (denoted by the subscript L),

$$ {{{V}}_{\rm{L}}}\frac{{{\text{d}}{{\text{P}}_{\rm{L}}}}}{{dt}} = {{CL}}_{\rm{d1}}^{\rm{H}}{{{P}}_{\rm{LB}}} - {\kern 1pt} {\kern 1pt} {{CL}}_{\rm{d2}}^{\rm{H}}{{{P}}_{\rm{L}}} $$
(15)
$$ {{{V}}_{\rm{L}}}\frac{{{\text{dM}}{{\text{i}}_{\rm{L}}}}}{{dt}} = {{CL}}_{\rm{d1}}^{\rm{H}}\left\{ {{mi}} \right\}{{M}}{{{i}}_{\rm{LB}}} - {\kern 1pt} {\kern 1pt} {{CL}}_{\rm{d2}}^{\rm{H}}\left\{ {{mi}} \right\}{{M}}{{{i}}_{\rm{L}}} $$
(16)
  1. (2)

    Case 2 (see Fig. 2 for the model scheme)

In systemic blood (denoted by the subscript, SB),

$$ {{{V}}_{\rm{SB}}}\frac{{{\text{d}}{{\text{P}}_{\rm{SB}}}}}{{dt}} = {{{Q}}_{\rm{HP}}}\frac{{{{\text{P}}_{\rm{HP}}}}}{{{{{K}}_{\rm{HP}}}}} + {{{Q}}_{\rm{PP}}}\frac{{{{\text{P}}_{\rm{PP}}}}}{{{{{K}}_{\rm{PP}}}}} + \left( {{{{Q}}_{\rm{HA}}} + {{{Q}}_{\rm{PV}}}} \right){{{P}}_{\rm{LB}}} - \left( {{{C}}{{{L}}_{\rm{r}}} + {{{Q}}_{\rm{HP}}} + {{{Q}}_{\rm{PP}}} + {{{Q}}_{\rm{HA}}} + {{{Q}}_{\rm{PV}}}} \right){{{P}}_{\rm{SB}}} $$
(17)
$$ {{{V}}_{\rm{SB}}}\frac{{{\text{dM}}{{\text{i}}_{\rm{SB}}}}}{{dt}} = {\kern 1pt} {\kern 1pt} {\kern 1pt} {{{Q}}_{\rm{HP}}}\frac{{{\text{M}}{{\text{i}}_{\rm{HP}}}}}{{{{{K}}_{\rm{HP}}}\left\{ {{mi}} \right\}}} + {{{Q}}_{\rm{PP}}}\frac{{{\text{M}}{{\text{i}}_{\rm{PP}}}}}{{{{{K}}_{\rm{PP}}}\left\{ {{mi}} \right\}}} + \left( {{{{Q}}_{\rm{HA}}} + {{{Q}}_{\rm{PV}}}} \right){{M}}{{{i}}_{\rm{LB}}} - \left( {{{C}}{{{L}}_{\rm{r}}}\left\{ {{mi}} \right\} + {{{Q}}_{\rm{HP}}} + {{{Q}}_{\rm{PP}}} + {{{Q}}_{\rm{HA}}} + {{{Q}}_{\rm{PV}}}} \right){{M}}{{{i}}_{\rm{SB}}} $$
(18)

In highly perfused organs (denoted by the subscript, HP),

$$ {{{V}}_{\rm{HP}}}\frac{{{\text{d}}{{\text{P}}_{\rm{HP}}}}}{{dt}} = {{{Q}}_{\rm{HP}}}\left( {{{{P}}_{\rm{SB}}} - \frac{{{{\text{P}}_{\rm{HP}}}}}{{{{{K}}_{\rm{HP}}}}}} \right) $$
(19)
$$ {{{V}}_{\rm{HP}}}\frac{{{\text{dM}}{{\text{i}}_{\rm{HP}}}}}{{dt}} = {{{Q}}_{\rm{HP}}}\left( {{{M}}{{{i}}_{\rm{SB}}} - \frac{{{\text{M}}{{\text{i}}_{\rm{HP}}}}}{{{{{K}}_{\rm{HP}}}\left\{ {{mi}} \right\}}}} \right) $$
(20)

In poorly perfused organs (denoted by the subscript, PP),

$$ {{{V}}_{\rm{PP}}}\frac{{{\text{d}}{{\text{P}}_{\rm{PP}}}}}{{dt}} = {{{Q}}_{\rm{PP}}}\left( {{{{P}}_{\rm{SB}}} - \frac{{{{\text{P}}_{\rm{PP}}}}}{{{{{K}}_{\rm{PP}}}}}} \right) $$
(21)
$$ {{{V}}_{\rm{PP}}}\frac{{{\text{dM}}{{\text{i}}_{\rm{PP}}}}}{{dt}} = {{{Q}}_{\rm{PP}}}\left( {{{M}}{{{i}}_{\rm{SB}}} - \frac{{{\text{M}}{{\text{i}}_{\rm{PP}}}}}{{{{{K}}_{\rm{PP}}}\left\{ {{mi}} \right\}}}} \right) $$
(22)

In intestinal blood (denoted by the subscript, Intb),

$$ {{{V}}_{\rm{Intb}}}\frac{{{\text{d}}{{\text{P}}_{\rm{Intb}}}}}{{dt}} = {{{Q}}_{\rm{PV}}}{{{P}}_{\rm{SB}}} + {{CL}}_{\rm{d2}}^{\rm{I}}{{{P}}_{\rm{Int}}} - \left( {{{{Q}}_{\rm{PV}}} + {{CL}}_{\rm{d1}}^{\rm{I}}} \right){{{P}}_{\rm{Intb}}} $$
(23)
$$ {{{V}}_{\rm{Intb}}}\frac{{{\text{dM}}{{\text{i}}_{\rm{Intb}}}}}{{dt}} = {{{Q}}_{\rm{PV}}}{{M}}{{{i}}_{\rm{SB}}} + {{CL}}_{\rm{d2}}^{\rm{I}}\left\{ {{mi}} \right\}{{M}}{{{i}}_{\rm{Int}}} - \left( {{{{Q}}_{\rm{PV}}} + {{CL}}_{\rm{d1}}^{\rm{I}}\left\{ {{mi}} \right\}} \right){{M}}{{{i}}_{\rm{Intb}}} $$
(24)

In intestinal tissue (denoted by the subscript, Int),

$$ {{{V}}_{\rm{Int}}}\frac{{{\text{d}}{{\text{P}}_{\rm{Int}}}}}{{dt}} = {{CL}}_{\rm{d1}}^{\rm{I}}{{{P}}_{\rm{Intb}}} + {{{k}}_{\rm{a}}}{{{P}}_{\rm{lumen}}}{{{V}}_{\rm{lumen}}} - {{CL}}_{\rm{d2}}^{\rm{I}}{{{P}}_{\rm{Int}}} $$
(25)
$$ {{{V}}_{\rm{Int}}}\frac{{{\text{dM}}{{\text{i}}_{\rm{Int}}}}}{{dt}} = {{CL}}_{\rm{d1}}^{\rm{I}}\left\{ {{mi}} \right\}{{M}}{{{i}}_{\rm{Intb}}} - {{CL}}_{\rm{d2}}^{\rm{I}}\left\{ {{mi}} \right\}{{M}}{{{i}}_{\rm{Int}}} $$
(26)

In intestinal lumen (denoted by the subscript, lumen),

$$ {{{V}}_{\rm{lumen}}}\frac{{{\text{d}}{{\text{P}}_{\rm{lumen}}}}}{{dt}} = - \left( {{{{k}}_{\rm{a}}} + {{{k}}_{\rm{g}}}} \right){{{P}}_{\rm{lumen}}}{{{V}}_{\rm{lumen}}} $$
(27)

In liver blood (denoted by the subscript, LB),

$$ {{{V}}_{\rm{LB}}}\frac{{{\text{d}}{{\text{P}}_{\rm{LB}}}}}{{dt}} = {{{Q}}_{\rm{PV}}}{{{P}}_{\rm{Intb}}} + {{{Q}}_{\rm{HA}}}{{{P}}_{\rm{SB}}} + {{CL}}_{\rm{d2}}^{\rm{H}}{{{P}}_{\rm{L}}} - \left( {{{{Q}}_{\rm{PV}}} + {{{Q}}_{\rm{HA}}} + {{CL}}_{\rm{d1}}^{\rm{H}}} \right){{{P}}_{\rm{LB}}} $$
(28)
$$ {{{V}}_{\rm{LB}}}\frac{{{\text{dM}}{{\text{i}}_{\rm{LB}}}}}{{dt}} = {{{Q}}_{\rm{PV}}}{{M}}{{{i}}_{\rm{Intb}}} + {{{Q}}_{\rm{HA}}}{{M}}{{{i}}_{\rm{SB}}} + {{CL}}_{\rm{d2}}^{\rm{H}}\left\{ {{mi}} \right\}{{M}}{{{i}}_{\rm{L}}} - \left( {{{{Q}}_{\rm{PV}}} + {{{Q}}_{\rm{HA}}} + {{CL}}_{\rm{d1}}^{\rm{H}}\left\{ {{mi}} \right\}} \right){{M}}{{{i}}_{\rm{LB}}} $$
(29)

In liver tissue (denoted by the subscript, L),

$$ {{{V}}_{\rm{L}}}\frac{{{\text{d}}{{\text{P}}_{\rm{L}}}}}{{dt}} = {{CL}}_{\rm{d1}}^{\rm{H}}{{{P}}_{\rm{LB}}} - \left( {{{CL}}_{\rm{d2}}^{\rm{H}} + {{C}}{{{L}}_{{\rm{int,met1,H}}}} + {{C}}{{{L}}_{{\rm{int,met2,H}}}} + {{C}}{{{L}}_{{\rm{int,sec,H}}}}} \right){{{P}}_{\rm{L}}} $$
(30)
$$ {{{V}}_{\rm{L}}}\frac{{{\text{dM}}{{\text{i}}_{\rm{L}}}}}{{dt}} = {\kern 1pt} {\kern 1pt} {{CL}}_{\rm{d1}}^{\rm{H}}\left\{ {{mi}} \right\}{{M}}{{{i}}_{\rm{LB}}} + {{C}}{{{L}}_{{\rm{int,met1,H}}}}{{{P}}_{\rm{L}}} - \left( {{{CL}}_{\rm{d2}}^{\rm{H}}\left\{ {{mi}} \right\} + {{C}}{{{L}}_{{\rm{int,met,H}}}}\left\{ {{mi}} \right\} + {{C}}{{{L}}_{{\rm{int,sec,H}}}}\left\{ {{mi}} \right\}} \right){{M}}{{{i}}_{\rm{L}}} $$
(31)
  1. (3)

    Case 3 (see Fig. 3 for the model scheme, different metabolites were formed in intestine (as metabolite mi) and liver (as metabolite mii))

In systemic blood (denoted by the subscript, SB),

$$ {{{V}}_{\rm{SB}}}\frac{{{\text{d}}{{\text{P}}_{\rm{SB}}}}}{{dt}} = {{{Q}}_{\rm{HP}}}\frac{{{{\text{P}}_{\rm{HP}}}}}{{{{{K}}_{\rm{HP}}}}} + {{{Q}}_{\rm{PP}}}\frac{{{{\text{P}}_{\rm{PP}}}}}{{{{{K}}_{\rm{PP}}}}} + \left( {{{{Q}}_{\rm{HA}}} + {{{Q}}_{\rm{PV}}}} \right){{{P}}_{\rm{LB}}} - \left( {{{C}}{{{L}}_{\rm{r}}} + {{{Q}}_{\rm{HP}}} + {{{Q}}_{\rm{PP}}} + {{{Q}}_{\rm{HA}}} + {{{Q}}_{\rm{PV}}}} \right){{{P}}_{\rm{SB}}} $$
(32)
$$ {{{V}}_{\rm{SB}}}\frac{{{\text{dM}}{{\text{i}}_{\rm{SB}}}}}{{dt}} = {\kern 1pt} {\kern 1pt} {\kern 1pt} {{{Q}}_{\rm{HP}}}\frac{{{\text{M}}{{\text{i}}_{\rm{HP}}}}}{{{{{K}}_{\rm{HP}}}\left\{ {{mi}} \right\}}} + {{{Q}}_{\rm{PP}}}\frac{{{\text{M}}{{\text{i}}_{\rm{PP}}}}}{{{{{K}}_{\rm{PP}}}\left\{ {{mi}} \right\}}} + \left( {{{{Q}}_{\rm{HA}}} + {{{Q}}_{\rm{PV}}}} \right){{M}}{{{i}}_{\rm{LB}}} - \left( {{{C}}{{{L}}_{\rm{r}}}\left\{ {{mi}} \right\} + {{{Q}}_{\rm{HP}}} + {{{Q}}_{\rm{PP}}} + {{{Q}}_{\rm{HA}}} + {{{Q}}_{\rm{PV}}}} \right){{M}}{{{i}}_{\rm{SB}}} $$
(33)
$$ {{\text{V}}_{{\text{SB}}}}\frac{{{\text{dMi}}{{\text{i}}_{{\text{SB}}}}}}{{{\text{dt}}}} = {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\text{Q}}_{{\text{HP}}}}\frac{{{\text{Mi}}{{\text{i}}_{{\text{HP}}}}}}{{{{\text{K}}_{{\text{HP}}}}\left\{ {{\text{mii}}} \right\}}} + {{\text{Q}}_{{\text{PP}}}}\frac{{{\text{Mi}}{{\text{i}}_{{\text{PP}}}}}}{{{{\text{K}}_{{\text{PP}}}}\left\{ {{\text{mii}}} \right\}}} + \left( {{{\text{Q}}_{{\text{HA}}}} + {{\text{Q}}_{{\text{PV}}}}} \right){\text{Mi}}{{\text{i}}_{{\text{LB}}}} - \left( {{\text{C}}{{\text{L}}_{\text{r}}}\left\{ {{\text{mii}}} \right\} + {{\text{Q}}_{{\text{HP}}}} + {{\text{Q}}_{{\text{PP}}}} + {{\text{Q}}_{{\text{HA}}}} + {{\text{Q}}_{{\text{PV}}}}} \right){\text{Mi}}{{\text{i}}_{{\text{SB}}}} $$
(34)

In highly perfused organs (denoted by the subscript, HP),

$$ {{{V}}_{\rm{HP}}}\frac{{{\text{d}}{{\text{P}}_{\rm{HP}}}}}{{dt}} = {{{Q}}_{\rm{HP}}}\left( {{{{P}}_{\rm{SB}}} - \frac{{{{\text{P}}_{\rm{HP}}}}}{{{{{K}}_{\rm{HP}}}}}} \right) $$
(35)
$$ {{{V}}_{\rm{HP}}}\frac{{{\text{dM}}{{\text{i}}_{\rm{HP}}}}}{{dt}} = {{{Q}}_{\rm{HP}}}\left( {{{M}}{{{i}}_{\rm{SB}}} - \frac{{{\text{M}}{{\text{i}}_{\rm{HP}}}}}{{{{{K}}_{\rm{HP}}}\left\{ {{mi}} \right\}}}} \right) $$
(36)
$$ {{{V}}_{\rm{HP}}}\frac{{{\text{dMi}}{{\text{i}}_{\rm{HP}}}}}{{dt}} = {{{Q}}_{\rm{HP}}}\left( {{{Mi}}{{{i}}_{\rm{SB}}} - \frac{{{\text{Mi}}{{\text{i}}_{\rm{HP}}}}}{{{{{K}}_{\rm{HP}}}\left\{ {{mii}} \right\}}}} \right) $$
(37)

In poorly perfused organs (denoted by the subscript, PP),

$$ {{{V}}_{\rm{PP}}}\frac{{{\text{d}}{{\text{P}}_{\rm{PP}}}}}{{dt}} = {{{Q}}_{\rm{PP}}}\left( {{{{P}}_{\rm{SB}}} - \frac{{{{\text{P}}_{\rm{PP}}}}}{{{{{K}}_{\rm{PP}}}}}} \right) $$
(38)
$$ {{{V}}_{\rm{PP}}}\frac{{{\text{dM}}{{\text{i}}_{\rm{PP}}}}}{{dt}} = {{{Q}}_{\rm{PP}}}\left( {{{M}}{{{i}}_{\rm{SB}}} - \frac{{{\text{M}}{{\text{i}}_{\rm{PP}}}}}{{{{{K}}_{\rm{PP}}}\left\{ {{mi}} \right\}}}} \right) $$
(39)
$$ {{{V}}_{\rm{PP}}}\frac{{{\text{dMi}}{{\text{i}}_{\rm{PP}}}}}{{dt}} = {{{Q}}_{\rm{PP}}}\left( {{{Mi}}{{{i}}_{\rm{SB}}} - \frac{{{\text{Mi}}{{\text{i}}_{\rm{PP}}}}}{{{{{K}}_{\rm{PP}}}\left\{ {{mii}} \right\}}}} \right) $$
(40)

In intestinal blood (denoted by the subscript, Intb),

$$ {{{V}}_{\rm{Intb}}}\frac{{{\text{d}}{{\text{P}}_{\rm{Intb}}}}}{{dt}} = {{{Q}}_{\rm{PV}}}{{{P}}_{\rm{SB}}} + {{CL}}_{\rm{d2}}^{\rm{I}}{{{P}}_{\rm{Int}}} - \left( {{{{Q}}_{\rm{PV}}} + {{CL}}_{\rm{d1}}^{\rm{I}}} \right){{{P}}_{\rm{Intb}}} $$
(41)
$$ {{{V}}_{\rm{Intb}}}\frac{{{\text{dM}}{{\text{i}}_{\rm{Intb}}}}}{{dt}} = {{{Q}}_{\rm{PV}}}{{M}}{{{i}}_{\rm{SB}}} + {{CL}}_{\rm{d2}}^{\rm{I}}\left\{ {{mi}} \right\}{{M}}{{{i}}_{\rm{Int}}} - \left( {{{{Q}}_{\rm{PV}}} + {{CL}}_{\rm{d1}}^{\rm{I}}\left\{ {{mi}} \right\}} \right){{M}}{{{i}}_{\rm{Intb}}} $$
(42)
$$ {{{V}}_{\rm{Intb}}}\frac{{{\text{dMi}}{{\text{i}}_{\rm{Intb}}}}}{{dt}} = {{{Q}}_{\rm{PV}}}{{Mi}}{{{i}}_{\rm{SB}}} + {{CL}}_{\rm{d2}}^{\rm{I}}\left\{ {{mii}} \right\}{{Mi}}{{{i}}_{\rm{Int}}} - \left( {{{{Q}}_{\rm{PV}}} + {{CL}}_{\rm{d1}}^{\rm{I}}\left\{ {{mii}} \right\}} \right){{Mi}}{{{i}}_{\rm{Intb}}} $$
(43)

In intestinal tissue (denoted by the subscript, Int),

$$ {{{V}}_{\rm{Int}}}\frac{{{\text{d}}{{\text{P}}_{\rm{Int}}}}}{{dt}} = {{CL}}_{\rm{d1}}^{\rm{I}}{{{P}}_{\rm{Intb}}} + {{{k}}_{\rm{a}}}{{{P}}_{\rm{lumen}}}{{{V}}_{\rm{lumen}}} - \left( {{{CL}}_{\rm{d2}}^{\rm{I}} + {{C}}{{{L}}_{{\rm{int,met1,I}}}} + {{C}}{{{L}}_{{\rm{int,met2,I}}}} + {{C}}{{{L}}_{{\rm{int,sec,I}}}}} \right){{{P}}_{\rm{Int}}} $$
(44)
$$ {{{V}}_{\rm{Int}}}\frac{{{\text{dM}}{{\text{i}}_{\rm{Int}}}}}{{dt}} = {{CL}}_{\rm{d1}}^{\rm{I}}\left\{ {{mi}} \right\}{{M}}{{{i}}_{\rm{Intb}}} + {{{k}}_{\rm{a}}}\left\{ {{mi}} \right\}{{M}}{{{i}}_{\rm{lumen}}}{{{V}}_{\rm{lumen}}} + {{C}}{{{L}}_{{\rm{int,met1,I}}}}{{{P}}_{\rm{Int}}} - \left( {{{CL}}_{\rm{d2}}^{\rm{I}}\left\{ {{mi}} \right\} + {{C}}{{{L}}_{{\rm{int,met,I}}}}\left\{ {{mi}} \right\} + {{C}}{{{L}}_{{\rm{int,sec,I}}}}\left\{ {{mi}} \right\}} \right){{M}}{{{i}}_{\rm{Int}}} $$
(45)
$$ {{{V}}_{\rm{Int}}}\frac{{{\text{dMi}}{{\text{i}}_{\rm{Int}}}}}{{dt}} = {{CL}}_{\rm{dl}}^{\rm{I}}\left\{ {{mii}} \right\}{{Mi}}{{{i}}_{\rm{Intb}}} - {{CL}}_{{\rm{d}}2}^{\rm{I}}\left\{ {{mii}} \right\}{{Mi}}{{{i}}_{{\rm Int} }} $$
(46)

In intestinal lumen (denoted by the subscript, lumen),

$$ {{{V}}_{\rm{lumen}}}\frac{{{\text{d}}{{\text{P}}_{\rm{lumen}}}}}{{dt}} = {{C}}{{{L}}_{{\rm{int,sec,I}}}}{{{P}}_{\rm{Int}}} - \left( {{{{k}}_{\rm{a}}} + {{{k}}_{\rm{g}}}} \right){{{P}}_{\rm{lumen}}}{{{V}}_{\rm{lumen}}} $$
(47)
$$ {{{V}}_{\rm{lumen}}}\frac{{{\text{dM}}{{\text{i}}_{\rm{lumen}}}}}{{dt}} = {{C}}{{{L}}_{{\rm{int,sec,I}}}}\left\{ {{mi}} \right\}{{M}}{{{i}}_{\rm{Int}}} - \left( {{{{k}}_{\rm{a}}}\left\{ {{mi}} \right\} + {{{k}}_{\rm{g}}}\left\{ {{mi}} \right\}} \right){{M}}{{{i}}_{\rm{lumen}}}{{{V}}_{\rm{lumen}}} $$
(48)

In liver blood (denoted by the subscript, LB),

$$ {{{V}}_{\rm{LB}}}\frac{{{\text{d}}{{\text{P}}_{\rm{LB}}}}}{{dt}} = {{{Q}}_{\rm{PV}}}{{{P}}_{\rm{Intb}}} + {{{Q}}_{\rm{HA}}}{{{P}}_{\rm{SB}}} + {{CL}}_{\rm{d2}}^{\rm{H}}{{{P}}_{\rm{L}}} - \left( {{{{Q}}_{\rm{PV}}} + {{{Q}}_{\rm{HA}}} + {{CL}}_{\rm{d1}}^{\rm{H}}} \right){{{P}}_{\rm{LB}}} $$
(49)
$$ {{{V}}_{\rm{LB}}}\frac{{{\text{dM}}{{\text{i}}_{\rm{LB}}}}}{{dt}} = {{{Q}}_{\rm{PV}}}{{M}}{{{i}}_{\rm{Intb}}} + {{{Q}}_{\rm{HA}}}{{M}}{{{i}}_{\rm{SB}}} + {{CL}}_{\rm{d2}}^{\rm{H}}\left\{ {{mi}} \right\}{{M}}{{{i}}_{\rm{L}}} - \left( {{{{Q}}_{\rm{PV}}} + {{{Q}}_{\rm{HA}}} + {{CL}}_{\rm{d1}}^{\rm{H}}\left\{ {{mi}} \right\}} \right){{M}}{{{i}}_{\rm{LB}}} $$
(50)
$$ {{{V}}_{\rm{LB}}}\frac{{{\text{dMi}}{{\text{i}}_{\rm{LB}}}}}{{dt}} = {{{Q}}_{\rm{PV}}}{{Mi}}{{{i}}_{\rm{Intb}}} + {{{Q}}_{\rm{HA}}}{{Mi}}{{{i}}_{\rm{SB}}} + {{CL}}_{\rm{d2}}^{\rm{H}}\left\{ {{mii}} \right\}{{Mi}}{{{i}}_{\rm{L}}} - \left( {{{{Q}}_{\rm{PV}}} + {{{Q}}_{\rm{HA}}} + {{CL}}_{\rm{d1}}^{\rm{H}}\left\{ {{mii}} \right\}} \right){{Mi}}{{{i}}_{\rm{LB}}} $$
(51)

In liver tissue (denoted by the subscript, L),

$$ {{{V}}_{\rm{L}}}\frac{{{\text{d}}{{\text{P}}_{\rm{L}}}}}{{dt}} = {{CL}}_{\rm{d1}}^{\rm{H}}{{{P}}_{\rm{LB}}} - {\kern 1pt} {\kern 1pt} \left( {{{CL}}_{\rm{d2}}^{\rm{H}} + {{C}}{{{L}}_{{\rm{int,met1,H}}}} + {{C}}{{{L}}_{{\rm{int,met2,H}}}} + {{C}}{{{L}}_{{\rm{int,sec,H}}}}} \right){{{P}}_{\rm{L}}} $$
(52)
$$ {{{V}}_{\rm{L}}}\frac{{{\text{dM}}{{\text{i}}_{\rm{L}}}}}{{dt}} = {{CL}}_{\rm{d1}}^{\rm{H}}\left\{ {{mi}} \right\}{{M}}{{{i}}_{\rm{LB}}} - {{CL}}_{\rm{d2}}^{\rm{H}}\left\{ {{mi}} \right\}{{M}}{{{i}}_{\rm{L}}} $$
(53)
$$ {{{V}}_{\rm{L}}}\frac{{{\text{dMi}}{{\text{i}}_{\rm{L}}}}}{{dt}} = {\kern 1pt} {\kern 1pt} {\kern 1pt} {{CL}}_{\rm{d1}}^{\rm{H}}\left\{ {{mii}} \right\}{{Mi}}{{{i}}_{\rm{LB}}} + {{C}}{{{L}}_{{\rm{int,met1,H}}}}{{{P}}_{\rm{L}}} - \left( {{{CL}}_{\rm{d2}}^{\rm{H}}\left\{ {{mii}} \right\} + {{C}}{{{L}}_{{\rm{int,met,H}}}}\left\{ {{mii}} \right\} + {{C}}{{{L}}_{{\rm{int,sec,H}}}}\left\{ {{mii}} \right\}} \right){{Mi}}{{{i}}_{\rm{L}}} $$
(54)
  1. (4)

    Case 4 (see Fig. 3 for the model scheme, the same metabolite was formed in intestine and liver)

In systemic blood (denoted by the subscript, SB),

$$ {{{V}}_{\rm{SB}}}\frac{{{\text{d}}{{\text{P}}_{\rm{SB}}}}}{{dt}} = {{{Q}}_{\rm{HP}}}\frac{{{{\text{P}}_{\rm{HP}}}}}{{{{{K}}_{\rm{HP}}}}} + {{{Q}}_{\rm{PP}}}\frac{{{{\text{P}}_{\rm{PP}}}}}{{{{{K}}_{\rm{PP}}}}} + \left( {{{{Q}}_{\rm{HA}}} + {{{Q}}_{\rm{PV}}}} \right){{{P}}_{\rm{LB}}} - \left( {{{C}}{{{L}}_{\rm{r}}} + {{{Q}}_{\rm{HP}}} + {{{Q}}_{\rm{PP}}} + {{{Q}}_{\rm{HA}}} + {{{Q}}_{\rm{PV}}}} \right){{{P}}_{\rm{SB}}} $$
(55)
$$ {{{V}}_{\rm{SB}}}\frac{{{\text{dM}}{{\text{i}}_{\rm{SB}}}}}{{dt}} = {\kern 1pt} {\kern 1pt} {{{Q}}_{\rm{HP}}}\frac{{{\text{M}}{{\text{i}}_{\rm{HP}}}}}{{{{{K}}_{\rm{HP}}}\left\{ {{mi}} \right\}}} + {{{Q}}_{\rm{PP}}}\frac{{{\text{M}}{{\text{i}}_{\rm{PP}}}}}{{{{{K}}_{\rm{PP}}}\left\{ {{mi}} \right\}}} + \left( {{{{Q}}_{\rm{HA}}} + {{{Q}}_{\rm{PV}}}} \right){{M}}{{{i}}_{\rm{LB}}} - \left( {{{C}}{{{L}}_{\rm{r}}}\left\{ {{mi}} \right\} + {{{Q}}_{\rm{HP}}} + {{{Q}}_{\rm{PP}}} + {{{Q}}_{\rm{HA}}} + {{{Q}}_{\rm{PV}}}} \right){{M}}{{{i}}_{\rm{SB}}} $$
(56)

In highly perfused organs (denoted by the subscript, HP),

$$ {{{V}}_{\rm{HP}}}\frac{{{\text{d}}{{\text{P}}_{\rm{HP}}}}}{{dt}} = {{{Q}}_{\rm{HP}}}\left( {{{{P}}_{\rm{SB}}} - \frac{{{{\text{P}}_{\rm{HP}}}}}{{{{{K}}_{\rm{HP}}}}}} \right) $$
(57)
$$ {{{V}}_{\rm{HP}}}\frac{{{\text{dM}}{{\text{i}}_{\rm{HP}}}}}{{dt}} = {{{Q}}_{\rm{HP}}}\left( {{{M}}{{{i}}_{\rm{SB}}} - \frac{{{\text{M}}{{\text{i}}_{\rm{HP}}}}}{{{{{K}}_{\rm{HP}}}\left\{ {{mi}} \right\}}}} \right) $$
(58)

In poorly perfused organs (denoted by the subscript, PP),

$$ {{{V}}_{\rm{PP}}}\frac{{{\text{d}}{{\text{P}}_{\rm{PP}}}}}{{dt}} = {{{Q}}_{\rm{PP}}}\left( {{{{P}}_{\rm{SB}}} - \frac{{{{\text{P}}_{\rm{PP}}}}}{{{{{K}}_{\rm{PP}}}}}} \right) $$
(59)
$$ {{{V}}_{\rm{PP}}}\frac{{{\text{dM}}{{\text{i}}_{\rm{PP}}}}}{{dt}} = {{{Q}}_{\rm{PP}}}\left( {{{M}}{{{i}}_{\rm{SB}}} - \frac{{{\text{M}}{{\text{i}}_{\rm{PP}}}}}{{{{{K}}_{\rm{PP}}}\left\{ {{mi}} \right\}}}} \right) $$
(60)

In intestinal blood (denoted by the subscript, Intb),

$$ {{{V}}_{\rm{Intb}}}\frac{{{\text{d}}{{\text{P}}_{\rm{Intb}}}}}{{dt}} = {{{Q}}_{\rm{PV}}}{{{P}}_{\rm{SB}}} + {{CL}}_{\rm{d2}}^{\rm{I}}{{{P}}_{\rm{Int}}} - \left( {{{{Q}}_{\rm{PV}}} + {{CL}}_{\rm{d1}}^{\rm{I}}} \right){{{P}}_{\rm{Intb}}} $$
(61)
$$ {{{V}}_{\rm{Intb}}}\frac{{{\text{dM}}{{\text{i}}_{\rm{Intb}}}}}{{dt}} = {{{Q}}_{\rm{PV}}}{{M}}{{{i}}_{\rm{SB}}} + {{CL}}_{\rm{d2}}^{\rm{I}}\left\{ {{mi}} \right\}{{M}}{{{i}}_{\rm{Int}}} - \left( {{{{Q}}_{\rm{PV}}} + {{CL}}_{\rm{d1}}^{\rm{I}}\left\{ {{mi}} \right\}} \right){{M}}{{{i}}_{\rm{Intb}}} $$
(62)

In intestinal tissue (denoted by the subscript, Int),

$$ {{{V}}_{\rm{Int}}}\frac{{{\text{d}}{{\text{P}}_{\rm{Int}}}}}{{dt}} = {{CL}}_{\rm{d1}}^{\rm{I}}{{{P}}_{\rm{Intb}}} + {{{k}}_{\rm{a}}}{{{P}}_{\rm{lumen}}}{{{V}}_{\rm{lumen}}} - \left( {{{CL}}_{\rm{d2}}^{\rm{I}} + {{C}}{{{L}}_{{\rm{int,met1,I}}}} + {{C}}{{{L}}_{{\rm{int,met2,I}}}} + {{C}}{{{L}}_{{\rm{int,sec,I}}}}} \right){{{P}}_{\rm{Int}}} $$
(63)
$$ {{{V}}_{\rm{Int}}}\frac{{{\text{dM}}{{\text{i}}_{\rm{Int}}}}}{{dt}} = {{CL}}_{\rm{d1}}^{\rm{I}}\left\{ {{mi}} \right\}{{M}}{{{i}}_{\rm{Intb}}} + {{{k}}_{\rm{a}}}\left\{ {{mi}} \right\}{{M}}{{{i}}_{\rm{lumen}}}{{{V}}_{\rm{lumen}}} + {{C}}{{{L}}_{{\rm{int,met1,I}}}}{{{P}}_{\rm{Int}}} - \left( {{{CL}}_{\rm{d2}}^{\rm{I}}\left\{ {{mi}} \right\} + {{C}}{{{L}}_{{\rm{int,met,I}}}}\left\{ {{mi}} \right\} + {{C}}{{{L}}_{{\rm{int,sec,I}}}}\left\{ {{mi}} \right\}} \right){{M}}{{{i}}_{\rm{Int}}} $$
(64)

In intestinal lumen (denoted by the subscript, lumen),

$$ {{{V}}_{\rm{lumen}}}\frac{{{\text{d}}{{\text{P}}_{\rm{lumen}}}}}{{dt}} = {{C}}{{{L}}_{{\rm{int,sec,I}}}}{{{P}}_{\rm{Int}}} - \left( {{{{k}}_{\rm{a}}} + {{{k}}_{\rm{g}}}} \right){{{P}}_{\rm{lumen}}}{{{V}}_{\rm{lumen}}} $$
(65)
$$ {{{V}}_{\rm{lumen}}}\frac{{{\text{dM}}{{\text{i}}_{\rm{lumen}}}}}{{dt}} = {{C}}{{{L}}_{{\rm{int,sec,I}}}}\left\{ {{mi}} \right\}{{M}}{{{i}}_{\rm{Int}}} - \left( {{{{k}}_{\rm{a}}}\left\{ {{mi}} \right\} + {{{k}}_{\rm{g}}}\left\{ {{mi}} \right\}} \right){{M}}{{{i}}_{\rm{lumen}}}{{{V}}_{\rm{lumen}}} $$
(66)

In liver blood (denoted by the subscript, LB),

$$ {{{V}}_{\rm{LB}}}\frac{{{\text{d}}{{\text{P}}_{\rm{LB}}}}}{{dt}} = {{{Q}}_{\rm{PV}}}{{{P}}_{\rm{Intb}}} + {{{Q}}_{\rm{HA}}}{{{P}}_{\rm{SB}}} + {{CL}}_{\rm{d2}}^{\rm{H}}{{{P}}_{\rm{L}}} - \left( {{{{Q}}_{\rm{PV}}} + {{{Q}}_{\rm{HA}}} + {{CL}}_{\rm{d1}}^{\rm{H}}} \right){{{P}}_{\rm{LB}}} $$
(67)
$$ {{{V}}_{\rm{LB}}}\frac{{{\text{dM}}{{\text{i}}_{\rm{LB}}}}}{{dt}} = {{{Q}}_{\rm{PV}}}{{M}}{{{i}}_{\rm{Intb}}} + {{{Q}}_{\rm{HA}}}{{M}}{{{i}}_{\rm{SB}}} + {{CL}}_{\rm{d2}}^{\rm{H}}\left\{ {{mi}} \right\}{{M}}{{{i}}_{\rm{L}}} - \left( {{{{Q}}_{\rm{PV}}} + {{{Q}}_{\rm{HA}}} + {{CL}}_{\rm{d1}}^{\rm{H}}\left\{ {{mi}} \right\}} \right){{M}}{{{i}}_{\rm{LB}}} $$
(68)

In liver tissue (denoted by the subscript, L),

$$ {{{V}}_{\rm{L}}}\frac{{{\text{d}}{{\text{P}}_{\rm{L}}}}}{{dt}} = {{CL}}_{\rm{d1}}^{\rm{H}}{{{P}}_{\rm{LB}}} - \left( {{{CL}}_{\rm{d2}}^{\rm{H}} + {{C}}{{{L}}_{{\rm{int,met1,H}}}} + {{C}}{{{L}}_{{\rm{int,met2,H}}}} + {{C}}{{{L}}_{{\rm{int,sec,H}}}}} \right){{{P}}_{\rm{L}}} $$
(69)
$$ {{{V}}_{\rm{L}}}\frac{{{\text{dM}}{{\text{i}}_{\rm{L}}}}}{{dt}} = {\kern 1pt} {{CL}}_{\rm{d1}}^{\rm{H}}\left\{ {{mi}} \right\}{{M}}{{{i}}_{\rm{LB}}} + {{C}}{{{L}}_{{\rm{int,met1,H}}}}{{{P}}_{\rm{L}}} - \left( {{{CL}}_{\rm{d2}}^{\rm{H}}\left\{ {{mi}} \right\} + {{C}}{{{L}}_{{\rm{int,met,H}}}}\left\{ {{mi}} \right\} + {{C}}{{{L}}_{{\rm{int,sec,H}}}}\left\{ {{mi}} \right\}} \right){{M}}{{{i}}_{\rm{L}}} $$
(70)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, H., Pang, K.S. Physiological Modeling to Understand the Impact of Enzymes and Transporters on Drug and Metabolite Data and Bioavailability Estimates. Pharm Res 27, 1237–1254 (2010). https://doi.org/10.1007/s11095-010-0049-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0049-2

KEY WORDS

Navigation