Skip to main content

Advertisement

Log in

Porphyrin and Galactosyl Conjugated Micelles for Targeting Photodynamic Therapy

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To study the targeting and photodynamic therapy efficiency of porphyrin and galactosyl conjugated micelles based on amphiphilic copolymer galactosyl and mono-aminoporphyrin (APP) incoporated poly(2-aminoethyl methacrylate)-polycaprolactone (Gal-APP-PAEMA-PCL).

Methods

Poly(2-aminoethyl methacrylate)-polycaprolactone (PAEMA-PCL) was synthesized by the combination of ring opening polymerization and reversible addition-fragmentation chain transfer (RAFT) polymerization, and then Gal-APP-PAEMA-PCL was obtained after conjugation of lactobionic acid and 5-(4-aminophenyl)-10,15,20-triphenylporphyrin (APP) to PAEMA-PCL. The chemical structures of the copolymers were characterized, and their biological properties were evaluated in human laryngeal carcinoma (HEp2) and human hepatocellular liver carcinoma (HepG2) cells.

Results

Both APP-PAEMA-PCL and Gal-APP-PAEMA-PCL did not exhibit dark cytotoxicity to HEp2 cells and HepG2 cells. However, Gal-APP-PAEMA-PCL was taken up selectively by HepG2 cells and had the higher phototoxicity effect. Both polymers preferentially localized within cellular vesicles that correlated to the lysosomes.

Conclusions

The results indicated that porphyrin and galactosyl conjugated polymer micelles exhibited higher targeting and photodynamic therapy efficacy in HepG2 cells than in HEp2 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Detty MR, Gibson SL, Wanger SJ. Current clinical and preclinical photosensitizers for use in photodynamic therapy. J Med Chem. 2004;47:3897–915.

    Article  PubMed  CAS  Google Scholar 

  2. Kessel D. Relocalization of cationic porphyrins during photodynamic therapy. Photochem Photobiol Sci. 2002;11:837–40.

    Article  CAS  Google Scholar 

  3. Banfi S, Caruso E, Caprioli S, Mazzagatti L, Canti G, Ravizza R, et al. Photodynamic effects of porphyrin and chlorin photosensitizers in human colon adenocarcinoma cells. Bioorg Med Chem. 2004;12:4853–60.

    Article  PubMed  CAS  Google Scholar 

  4. Castano AP, Liu Q, Hamblin MR. A green fluorescent protein-expressing murine tumour but not its wild-type counterpart is cured by photodynamic therapy. Br J Cancer. 2006;13:391–7.

    Article  CAS  Google Scholar 

  5. Nishiyama N, Stapert HR, Zhang GD, Takasu D, Jiang DL, Nagano T, et al. Light-harvesting ionic dendrimer porphyrins as new photosensitizers for photodynamic therapy. Bioconjugate Chem. 2003;14:58–66.

    Article  CAS  Google Scholar 

  6. Sharman WM, Allen CM, van Lier JE. Photodynamic therapeutics: basic principles and clinical applications. Drug Discov Today. 1999;11:507–17.

    Article  Google Scholar 

  7. Desjardins A, Flemming J, Sternberg ED, Dolphin D. Nitrogen extrusion from pyrazoline-substituted porphyrins and chlorins using long wavelength visible light. Chem Commun. 2002;22:2622–3.

    Article  CAS  Google Scholar 

  8. Li H, Fedorova OS, Trumble WR, Fletcher TR, Czuchajowski L. Site-specific photomodification of DNA by porphyrinoligonucleotide conjugates synthesized via a solid-phase H-phosphonate approach. Bioconjugate Chem. 1997;8:49–56.

    Article  Google Scholar 

  9. Hamblin MR, Newman EL. Photosensitizer targeting in photodynamic therapy. II. Conjugates of haematoporphyrin with serum lipoproteins. J Photochem Photobiol B: Bio. 1994;26:147–57.

    Article  CAS  Google Scholar 

  10. Gijsens A, Missiaen L, Merlevede W, de Witte P. Epidermal growth factor-mediated targeting of chlorin e6 selectively potentiates its photodynamic activity. Cancer Res. 2000;60:2197–202.

    PubMed  CAS  Google Scholar 

  11. Hudson R, Carcenac M, Smith K, Madden L, Clarke OJ, Pelegrin A, et al. The development and characterization of porphyrin isothiocyanate-monoclonal antibody conjugates for photoimmunotherapy. Br J Cancer. 2005;92:1442–9.

    Article  PubMed  CAS  Google Scholar 

  12. Li G, Pandey SK, Graham A, Dobhal MP, Mehta R, Chen Y, et al. Functionalization of OEP-based benzochlorins to develop carbohydrateconjugated photosensitizers. Attempt to target beta-galactosiderecognized proteins. J Org Chem. 2004;69:158–72.

    Article  PubMed  CAS  Google Scholar 

  13. Chen X, Gentry C, Kopeckova P, Kopecek J. HPMA copolymer-anticancer drug-OV-TL16 antibody conjugates. II. Processing in epithelial ovarian carcinoma cells in vitro. Int J Cancer. 1998;75:600–8.

    Article  Google Scholar 

  14. Soukos NS, Hamblin MR, Hasan T. The effect of charge on cellular uptake and phototoxicity of polylysine chlorin(e6) conjugates. Photochem Photobiol. 1997;65:723–9.

    Article  PubMed  CAS  Google Scholar 

  15. Pandey RK, Smith NW, Shiau FY, Dougherty TJ, Smith KM. Syntheses of cationic porphyrins and chlorines. J Chem Soc Chem Commun. 1991;22:1637–8.

    Article  Google Scholar 

  16. Oseroff AR, Ohuoha D, Ara G, McAuliffe D, Foley J, Cincotta L. Intramitochondrial dyes allow selective in vitro photolysis of carcinoma cells. Proc Natl Acad Sci USA. 1986;83:9729–33.

    Article  PubMed  CAS  Google Scholar 

  17. Park EK, Lee SB, Lee YM. Preparation and characterization of methoxy poly(ethylene glycol)/poly(epsilon-caprolactone) amphiphilic block copolymeric nanospheres for tumor-specific folate-mediated targeting of anticancer drugs. Biomaterials. 2005;26:1053–61.

    Article  PubMed  CAS  Google Scholar 

  18. Bae Y, Fukushima S, Harada A, Kataoka K. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: polymeric micelles that are responsive to intracellular pH change. Angew Chem Int Ed. 2003;42:4640–3.

    Article  CAS  Google Scholar 

  19. Nasongkla N, Shuai X, Ai H, Weinberg BD, Pink J, Boothman DA. cRGD-functionalized polymer micelles for targeted doxorubicin delivery. Angew Chem Int Ed. 2004;43:6323–7.

    Article  CAS  Google Scholar 

  20. Fallon RJ, Schwartz AL. Receptor-mediated delivery of drugs to hepatocytes. Adv Drug Deliv Rev. 1989;4:49–63.

    Article  CAS  Google Scholar 

  21. Donati I, Gamini A, Vetere A, Campa C, Paoletti S. Synthesis, characterization, and preliminary biological study of glycoconjugates of poly(styrene-co-maleic acid). Biomacromolecules. 2002;3:805–12.

    Article  PubMed  CAS  Google Scholar 

  22. Eisenberg C, Seta N, Appel M, Feldmann G, Durand G, Feger J. Asialoglycoprotein receptor in human isolated hepatocytes from normal liver and its apparent increase in liver with histological alterations. J Hepatol. 1991;13:305–9.

    Article  PubMed  CAS  Google Scholar 

  23. Ashwell G, Harford J. Carbohydrate-specific receptors of the liver. Annu Rev Biochem. 1982;51:531–54.

    Article  PubMed  CAS  Google Scholar 

  24. Adler AD, Longo FR, Shergalis W. Mechanistic investigations of porphyrin syntheses. I. preliminary studies on ms-tetraphenylporphin. J Am Chem Soc. 1964;86:3145–9.

    Article  CAS  Google Scholar 

  25. Kruper WJ, Chamberlin TA, Kochanny M. Regiospecific aryl nitration of meso-substituted tetraarylporphyrins: a simple route to bifunctional porphyrins. J Org Chem. 1989;54:2753–6.

    Article  CAS  Google Scholar 

  26. Wu DQ, Sun YX, Xu XD, Cheng SX, Zhang XZ, Zhuo RX. Biodegradable and pH-sensitive hydrogels for cell encapsulation and controlled drug release. Biomacromolecules. 2008;9:1155–62.

    Article  PubMed  CAS  Google Scholar 

  27. Wei H, Zhang XZ, Zhou Y, Cheng SX, Zhuo RX. Self-assembled thermoresponsive micelles of poly(N-isopropylacrylamide-b-methyl methacrylate). Biomaterials. 2006;27:2028–34.

    Article  PubMed  CAS  Google Scholar 

  28. Zhu JL, Zhang XZ, Cheng H, Li YY, Cheng SX, Zhuo RX. Synthesis and characterization of well-defined, amphiphilic Poly(N-isopropylacrylamide)-b-[2-hydroxyethyl methacrylate- poly(ε-caprolactone)]n graft Copolymers by RAFT polymerization and macromonomer method. J Polym Sci Pol Chem. 2007;45:5354–64.

    Article  CAS  Google Scholar 

  29. Velapoldi RA, Tønnesen HH. Corrected emission spectra and quantum yields for a series of fluorescent compounds in the visible spectral region. J Fluoresc. 2004;14:465–72.

    Article  PubMed  CAS  Google Scholar 

  30. Seybold PG, Gouterman M. Porphyrins: XIII: fluorescence spectra and quantum yields. J Mol Spectrosc. 1969;31:1–13.

    Article  CAS  Google Scholar 

  31. Inoue T, Chen G, Nakamae K, Hoffman AS. An AB block copolymer of oligo(methyl methacrylate) and poly(acrylic acid) for micellar delivery of hydrophobic drugs. J Control Release. 1998;51:221–9.

    Article  PubMed  CAS  Google Scholar 

  32. Morita T, Horikiri Y, Suzuki T, Yoshino H. Preparation of gelatin microparticles by co-lyophilization with poly(ethylene glycol): characterization and application to entrapment into biodegradable microspheres. Int J Pharm. 2001;219:127–37.

    Article  PubMed  CAS  Google Scholar 

  33. Giacomelli C, Schmidt V, Borsali R. Nanocontainers formed by self-assembly of poly(ethylene oxide)-b-poly(glycerol monomethacrylate)-drug conjugates. Macromolecules. 2007;40:2148–57.

    Article  CAS  Google Scholar 

  34. Ye YQ, Yang FL, Hu FQ, Du YZ, Yuan H, Yu HY. Core-modified chitosan-based polymeric micelles for controlled release of doxorubicin. Int J Pharm. 2008;352:294–301.

    Article  PubMed  CAS  Google Scholar 

  35. Kanofsky JR. Quenching of singlet oxygen by human plasma. Photochem Photobiol. 1990;51:299–303.

    Article  PubMed  CAS  Google Scholar 

  36. Kornguth SE, Kalinke T, Robins HI, Cohen JD, Turski P. Preferential binding of radiolabeled Poly-L-lysines to C6 and U87 MG glioblastomas compared with endothelial cells in vitro. Cancer Res. 1989;49:6390–5.

    PubMed  CAS  Google Scholar 

  37. Sibrian-Vazquez M, Jensen TJ, Fronczek FR, Hammer RP, Vicente MGH. Synthesis and characterization of positively charged porphyrin-peptide conjugates. Bioconjugate Chem. 2005;16:852–63.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The financial supports from National Natural Science Foundation of China (50633020), Ministry of Science and Technology of China (2005CB623903) and Ministry of Education of China (Cultivation Fund of Key Scientific and Technical Innovation, Project 707043) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Zheng Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material

(DOC 1086 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, DQ., Li, ZY., Li, C. et al. Porphyrin and Galactosyl Conjugated Micelles for Targeting Photodynamic Therapy. Pharm Res 27, 187–199 (2010). https://doi.org/10.1007/s11095-009-9998-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9998-8

KEY WORDS

Navigation