Skip to main content

Advertisement

Log in

Mathematical Model to Predict Skin Concentration of Drugs: Toward Utilization of Silicone Membrane to Predict Skin Concentration of Drugs as an Animal Testing Alternative

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To calculate the skin concentration of active ingredients in cosmetics and topical pharmaceuticals using silicone membrane permeation.

Methods

A series of parabens were used as model ingredients. Skin concentration of parabens was calculated using silicone membrane permeability. Their partition coefficient from formulations to the silicone membrane was determined by the membrane permeation profiles, and used to calculate their silicone membrane concentration, under an assumption that the membrane is one homogenous diffusion layer. The same procedure was applied for hairless rat skin.

Results

The calculated concentration of parabens in silicone membrane was very close to their observed values. However, the skin concentration calculated by skin permeability was not similar to the observed concentration. Re-calculation was performed under the assumption that the skin consists of two diffusion layers. This modification using permeation data through full-thickness and stripped skin enabled precise prediction of the skin concentration of parabens. In addition, the partition coefficient to the silicone membrane was useful to estimate their skin concentration.

Conclusions

Ingredient concentration in skin can be precisely predicted using diffusion equations and partition coefficients through permeation experiments using a silicone membrane. The calculated in-skin concentration is useful for formulation studies of cosmetics and topical pharmaceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Knepp VM, Hadgraft J, Guy RH. Transdermal drug delivery: Problems and possibilities. Critical Rev Ther Drug Carrier Sys. 1987;4:13–37.

    CAS  Google Scholar 

  2. Singh P, Roberts MS. Iontophoretic transdermal delivery of salicylic acid and lidocaine to local subcutaneous structures. J Pharm Sci. 1993;82:127–31.

    Article  PubMed  CAS  Google Scholar 

  3. McNeill SC, Potts RO, Francoeur ML. Local enhanced topical delivery (LETD) of drugs: Does it truly exist? Pharm Res. 1992;9:1422–7.

    Article  PubMed  CAS  Google Scholar 

  4. Lodén M, Ungerth L, Serup J. Changes in European legislation make it timely to introduce a transparent market surveillance system for cosmetics. Acta Dermato-Venereol. 2007;87:485–92.

    Article  Google Scholar 

  5. Toyoda H. Regulation of the animal experiments and testing in EU. Envir Mutagen Res. 2005;27:125–8.

    Article  Google Scholar 

  6. Kolar R. Animal experimentation. Sci Eng Ethics. 2006;12:111–22.

    Article  PubMed  Google Scholar 

  7. Spielmann H. Animal use in the safety evaluation of chemicals: harmonization and emerging needs. ILAR J. 2002;43(Suppl):S11–7.

    PubMed  CAS  Google Scholar 

  8. Leveque N, Raghavan SL, Lane ME, Hadgraft J. Use of a molecular form technique for the penetration of supersaturated solutions of salicylic acid across silicone membranes and human skin in vitro. Int J Pharm. 2006;318:49–54.

    Article  PubMed  CAS  Google Scholar 

  9. Ottaviani G, Martel S, Carrupt P. Parallel artificial membrane permeability assay: a new membrane for the fast prediction of passive human skin permeability. J Med Chem. 2006;49:3948–54.

    Article  PubMed  CAS  Google Scholar 

  10. Hatanaka T, Inuma M, Sugibayashi K, Morimoto Y. Prediction of skin permeability of drugs. I. Comparison with artificial membrane. Chem Pharm Bull. 1990;38:3452–9.

    PubMed  CAS  Google Scholar 

  11. Geinoz S, Rey S, Boss G, Bunge AL, Guy RH, Carrupt PA, et al. Quantitative structure: permeation relationships for solute transport across silicone membranes. Pharm Res. 2002;19:1622–9.

    Article  PubMed  CAS  Google Scholar 

  12. Hasegawa T, Kim S, Tsuchida M, Isshiki Y, Kondo S, Sugibayashi K. Decrease in skin permeation and antibacterial effect of parabens by a polymeric additive, poly(2-methacryloyloxyethyl phosphorylcholine -cobutylmetacrylate). Chem Pharm Bull. 2005;53:271–6.

    Article  PubMed  CAS  Google Scholar 

  13. Herkenne C, Naik A, Kalia YN, Hadgraft J, Guy RH. Ibuprofen transport into and through skin from topical formulations: In vitro-in vivo comparison. J Invest Dermatol. 2007;127:135–42.

    Article  PubMed  CAS  Google Scholar 

  14. Hada N, Hasegawa T, Takahashi H, Ishibashi T, Sugibayashi K. Cultured skin loaded with tetracycline HCl and chloramphenicol as dermal delivery system: mathematical evaluation of the cultured skin containing antibiotics. J Control Release. 2005;108:341–50.

    Article  PubMed  CAS  Google Scholar 

  15. Scheuplein RJ, Blank IH. Mechanism of percutaneous absorption. IV. Penetration of nonelectrolytes (alcohols) from aqueous solutions and from pure liquids. J Invest Dermatol. 1973;60:286–96.

    Article  CAS  Google Scholar 

  16. Scheuplein RJ. Mechanism of percutaneous absorption: transient diffusion and the relative importance of various routes of skin penetration. J Invest Dermatol. 1967;48:79–88.

    PubMed  CAS  Google Scholar 

  17. Watanabe T, Hasegawa T, Takahashi H, Ishibashi T, Sugibayashi K. Utility of three-dimensional cultured human skin model as a tool to evaluate skin permeation drugs. Altern Animal Test Experiment. 2001;8:1–14.

    Google Scholar 

  18. Ghanem AH, Mahmoud H, Higuchi WI, Liu P. The effects of ethanol on the transport of lipophilic and polar permeants across hairless mouse skin: methods/validation of a novel approach. Int J Pharm. 1992;78:137–56.

    Article  CAS  Google Scholar 

  19. Sugibayashi K, Hosoya K, Morimoto Y, Higuchi WI. Effect of the absorption enhancer, Azone, on the transport of 5-fluorouracil across hairless rat skin. J Pharm Pharmacol. 1985;37:578–80.

    PubMed  CAS  Google Scholar 

  20. Pedersen S, Marra F, Nicoli S, Santi P. In vitro skin permeation and retention of parabens from cosmetic formulations. Int J Cosmetic Sci. 2007;29:361–7.

    Article  CAS  Google Scholar 

  21. Moser K, Kriwet K, Naik A, Kalia YN, Guy RH. Passive skin penetration enhancement and its quantification in vitro. Eur J Pharm Biopharm. 2001;52:103–12.

    Article  PubMed  CAS  Google Scholar 

  22. Okumura M, Sugibayashi K, Ogawa K, Morimoto Y. Skin permeability of water-soluble drugs. Chem Pharm Bull. 1986;37:1404–6.

    Google Scholar 

  23. Washitake M, Yajima T, Anmo T, Arita T, Hori R. Studies on percutaneous absorption of drugs. 3. Percutaneous absorption of drugs through damaged skin. Chem Pharm Bull. 1973;21:2444–51.

    PubMed  CAS  Google Scholar 

  24. Sugibayashi K, Hayashi T, Morimoto Y. Simultaneous transport and metabolism of ethyl nicotinate in hairless rat skin after its topical application: the effect of enzyme distribution in skin. J Control Release. 1999;62:201–8.

    Article  PubMed  CAS  Google Scholar 

  25. Wilson BW, Walker CR. Regulation of newly synthesized acetylcholinesterase in muscle cultures treated with diisopropylfluorophosphate. Proc Natl Acad Sci USA. 1974;71:3194–8.

    Article  PubMed  CAS  Google Scholar 

  26. Sugibayashi K, Hayashi T, Matsumoto K, Hasegawa T. Utility of a three-dimensional cultured human skin model as a tool to ethyl nicotinate in skin. Drug Metabol Phamacokin. 2004;19:352–62.

    Article  CAS  Google Scholar 

  27. Nagaosa Y, Tanizaki M. Simultaneous determination of zinc(II) and iron(III) in human serum by liquid chromatography using post-column derivatization with 4-(2-pyridylazo)-resorcinol. J Liquid Chromat Related Technol. 1997;20:2357–66.

    Article  CAS  Google Scholar 

  28. Kawase S, Kanno S, Ukai S. Determination of the herbicides paraquat and diquat in blood and urine by gas chromatography. J Chromat. 1984;283:231–40.

    Article  CAS  Google Scholar 

  29. Izquierdo P, Gómez-Hens A, Pérez-Bendito D. Stopped-flow fluorometric determination of ampicillin in serum. Fresenius’ J Analyt Chem. 1992;342:606–8.

    Article  CAS  Google Scholar 

  30. Morimoto Y, Sugibayashi K, Hosoya K, Higuchi WI. Penetration enhancer effect of Azone on the transport of 5-fluorouracil across hairless rat skin. Int J Pharm. 1986;32:31–8.

    Article  CAS  Google Scholar 

  31. Vaughan CD. Solubility effect in product, package, penetration and preservation. Cosmet Toilet. 1988;103:47–69.

    CAS  Google Scholar 

  32. Fedors RF. A method for estimating both the solubility parameters and molar volumes of liquids. Polym Eng Sci. 147 (1974).

  33. LaPack MA, Tou JC, McGuffin VL, Enke CG. The correlation of membrane permselectivity with Hildebrand solubility parameters. J Membrane Sci. 1994;86:263–80.

    Article  CAS  Google Scholar 

  34. Dias M, Hadgraft J, Lane ME. Influence of membrane-solvent-solute interactions on solute permeation in model membranes. Int J Pharm. 2007;336:108–14.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENT

The authors are grateful to Mr. Yosuke Urabe and Mr. Masayasu Sugiura, Nagase & Co., Ltd. (Tokyo, Japan) for information on the silicone membrane.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Sugibayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugibayashi, K., Todo, H., Oshizaka, T. et al. Mathematical Model to Predict Skin Concentration of Drugs: Toward Utilization of Silicone Membrane to Predict Skin Concentration of Drugs as an Animal Testing Alternative. Pharm Res 27, 134–142 (2010). https://doi.org/10.1007/s11095-009-9987-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9987-y

KEY WORDS

Navigation