Skip to main content

Advertisement

Log in

Preparation, Characterization and Evaluation of Targeting Potential of Amphotericin B-Loaded Engineered PLGA Nanoparticles

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The objective of present work was to develop a mannose-anchored, engineered nanoparticulate system for efficient delivery of amphotericin B to macrophages. Furthermore, the effect of spacer on macrophage targeting was also evaluated.

Methods

PLGA was conjugated to mannose via direct coupling (M-PLGA) and via PEG spacer (M-PEG-PLGA), and engineered PLGA nanoparticles (M-PNPs and M-PEG-PNPs) were prepared from respective conjugates. These prepared engineered PNPs were characterized for size, polydispersity index (PDI), surface charge, and drug entrapment efficiency (% DEE). Transmission electron microscopy (TEM) and atomic force microscopy (AFM) were employed to study the shape and surface morphology of engineered PNPs. Macrophage targeting was evaluated via cellular uptake, ex vivo antileishmanial activity and in vivo biodisposition pattern of engineered PNPs in macrophage-rich organs.

Results

The developed engineered PNPs were found to be of nanometric size (<200 nm) and to have low PDI (<0.162) and good entrapment efficiency (%DEE >53.0%). AFM and TEM revealed that both M-PNPs and M-PEG-PNPs had smooth surface and spherical topography. Engineered PNPs with spacer showed enhanced uptake, potential antileishmanial activity and higher disposition in macrophage-rich organs, suggesting improved macrophage targeting.

Conclusions

The results suggest that engineering of nanoparticles could lead to development of efficient carrier for macrophage targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nahar M, Mishra D, Dubey V, Jain NK. Development, characterization and toxicity evaluation of amphotericin B-loaded gelatin nanoparticles. Nanomed Nanotech Bio Med. 2008;4:252–61.

    Article  Google Scholar 

  2. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy. Cancer Res. 1986;46:6387–92.

    CAS  PubMed  Google Scholar 

  3. Owais M, Gupta CM. Targeted drug delivery to macrophages in parasitic infections. Cur Drug Del. 2005;2(4):311–8.

    Article  CAS  Google Scholar 

  4. Chellat F, Merhi Y, Moreau A, Yahia LH. Therapeutic potential of nanoparticulate systems for macrophage targeting. Biomaterial. 2005;26:7260–75.

    Article  CAS  Google Scholar 

  5. Nahar M, Dutta T, Murugesan S, Asthana A, Mishra D, Saraf S, et al. Functional polymeric nanoparticles: an efficient and promising tool for active delivery of bioactives. Crit Rev Ther Drug Carrier Syst. 2006;23:259–318.

    CAS  PubMed  Google Scholar 

  6. Sharma A, Sharma S, Khuller GK. Lectin-functionalized poly (lactide-co-glycolide) nanoparticles as oral/aerosolized antitubercular drug carriers for treatment of tuberculosis. J Antimicrob Chemother. 2004;54(4):761–6.

    Article  CAS  PubMed  Google Scholar 

  7. Kassab R, Parrot-Lopez H, Fessi H, Menaucourt J, Bonaly R, Coulon J. Molecular recognition by kluyveromyces of amphotericin B-loaded, galactose-tagged, poly (lactic acid) microspheres. Bio Org Med Chem. 2002;10:1767–75.

    Article  CAS  Google Scholar 

  8. Olivier J, Huertas R, Lee HJ, Calon F, Pardrige WM. Synthesis of Pegylated immunonanoparticles. Pharm Res. 2002;19(8):1137–43.

    Article  CAS  PubMed  Google Scholar 

  9. Sett R, Sarkar K, Das PK. Macrophage-directed delivery of doxorubicin conjugated to neoglycoprotein using leishmaniasis as the model disease. J Infect Dis. 1993;168(4):994–9.

    CAS  PubMed  Google Scholar 

  10. Ahsan F, Rivas IP, Khan MA, Torres SA. Targeting to macrophages: role of physicochemical properties of particulate carriers-liposomes and microspheres-on the phagocytosis by macrophages. J Contr Rel. 2002;79(1–3):29–40.

    Article  CAS  Google Scholar 

  11. Basu MK, Lala S. Macrophage specific drug delivery in experimental leishmaniasis. Curr Mol Med. 2004;4(6):681–9.

    Article  CAS  PubMed  Google Scholar 

  12. Mukhopadhyay A, Basu SK. Intracellular delivery of drugs to macrophages. Adv Biocheml Eng /Biotech. 2003;84:183–209.

    CAS  Google Scholar 

  13. Chakraborty P, Bhaduri AN, Das PK. Sugar receptor mediated drug delivery to macrophages in the therapy of experimental visceral leishmaniasis. Biochem Biophy Res Comm. 1990;166:404–11.

    Article  CAS  Google Scholar 

  14. Yamashita C, Sone S, Ogura T, Kiwada H. Potential value of cetylmannoside-modified liposomes as carriers of macrophages activators to human blood monocytes. Japan J Cancer Res. 1991;82:569–75.

    CAS  Google Scholar 

  15. Muller CD, Schuber F. Neo-mannosylated liposomes: synthesis and interaction with mouse Kupffer cells and resident peritoneal macrophages. Biochem Biophy Acta. 1989;986:97–101.

    Article  CAS  Google Scholar 

  16. Barratt GM, Nolibe D, Yapo A, Petit JF, Tenu JP. Use of mannosylated liposomes for in vivo targeting of a macrophages activator and control of artificial pulmonary metastases. Ann Instit Past Imm. 1987;138:437–43.

    Article  CAS  Google Scholar 

  17. Garcon N, Gregoriadis G, Taylor M, Summerfield J. Mannose-mediated targeted immunoadjuvant action of liposomes. Immunology. 1988;64:743–9.

    CAS  PubMed  Google Scholar 

  18. Akamatsu K, Nisshikawa M, Takakura Y, Hashida M. Synthesis and biodistribution study of liver-specific prostaglandin E1 polymeric conjugate. Int J Pharm. 1977;155:65. 77.

    Article  Google Scholar 

  19. Mitchell JP, Roberts DR, Langley J, Koentgen F, Lambert JN. A direct method for the formation of peptide and carbohydrate dendrimers. Bio Org Med Chem Lett. 1999;9:2785–8.

    Article  CAS  Google Scholar 

  20. Venier-Julienne M, Benoit J. Preparation, purification and morphology of polymeric nanoparticles as drug carriers. Pharm Acta Helv. 1996;71:121–8.

    Article  PubMed  Google Scholar 

  21. Echevarria I, Barturen C, Renedo MJ, Dios-Vieitez MC. High-performance liquid chromatographic determination of amphotericin B in plasma and tissue; application to pharmacokinetic and tissue distribution studies in rats. J Chromat A. 1998;819:171–6.

    Article  CAS  Google Scholar 

  22. Westedt U, Kalinowski M, Ms Wittmar, Merdan T, Unger F, Fuchs J, et al. Poly(vinyl alcohol)-graft-poly(lactide-co-glycolide) nanoparticles for local delivery of paclitaxel for restenosis treatment. J Contr Rel. 2007;119:41–51.

    Article  CAS  Google Scholar 

  23. Copland MJ, Baird MA, Rades T, McKenzie JL, Becker B, Reck F, et al. Liposomal delivery of antigen to human dendritic cells. Vaccine. 2003;21:883–90.

    Article  CAS  PubMed  Google Scholar 

  24. Mishra D, Mishra PK, Dubey V, Nahar M, Dabadghao S, Jain NK. Systemic and mucosal immune response induced by transcutaneous immunization using Hepatitis B surface antigen loaded modified liposomes. Eur J Pharm Sci. 2008;33:424–33.

    Article  CAS  PubMed  Google Scholar 

  25. Kocbek P, Obermajer N, Cegnar M, Kos J, Kristl J. Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody. J Contr Rel. 2007;120:18–26.

    Article  CAS  Google Scholar 

  26. Dube A, Singh N, Sundar S, Singh N. Refractoriness to the treatment of sodium stibogluconate in Indian kala-azar field isolates persists in in vitro and in vivo experimental models. Parasitol Res. 2005;96:216–23.

    Article  PubMed  Google Scholar 

  27. Guru PY, Agarwal AK, Singhal UK, Singhal A, Gupta CM. Drug targeting in Leishmania donovani infections using tuftsin bearing liposomes as drug vehicles. FEBS Lett. 1989;245:204–8.

    Article  CAS  PubMed  Google Scholar 

  28. Senthilkumar M, Subramanian G, Ranjitkumar A, Nahar M, Mishra P, Jain NK. PEGylated Poly (Lactide-co-Glycolide) (PLGA) nanoparticulate delivery of Docetaxel: synthesis of diblock copolymers, optimization of preparation variables on formulation characteristics and in vitro release studies. J Biomed Nanotech. 2007;1:52–60.

    Google Scholar 

  29. Dutta T, Jain NK. Targeting potential and anti-HIV activity of lamivudine loaded mannosylated poly (propyleneimine) dendrimer. Biochem Biophy Acta. 2007;1770:681–6.

    CAS  Google Scholar 

  30. Espuelas MS, Legrand P, Irache JM, Gamazo C, Orecchioni AM, Devissaguet J-Ph, et al. Poly (ε-caprolacton) nanospheres as an alternative way to reduce amphotericin B toxicity. Int J Pharm. 1997;158:19–27.

    Article  CAS  Google Scholar 

  31. Panyam J, Labhasetwar V. Targeting intracellular targets. Cur Drug Del. 2004;1:235–47.

    Article  CAS  Google Scholar 

  32. Budhian A, Siegel SJ, Winey KI. Haloperidol-loaded PLGA nanoparticles: Systematic study of particle size and drug content. Int J Pharm. 2007;336:367–75.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENTS

Manoj Nahar is thankful to the Indian Council of Medical Research (ICMR, New Delhi, India) for providing financial support. All of the authors express their gratitude to AIMS New Delhi, India; Central Drug Research Institute, Lucknow, India; Bhopal Hospital and Memorial Research Center, Bhopal, India; and Inter University Center, Consortium for Scientific Research, Indore, India for various studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narendra K. Jain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nahar, M., Jain, N.K. Preparation, Characterization and Evaluation of Targeting Potential of Amphotericin B-Loaded Engineered PLGA Nanoparticles. Pharm Res 26, 2588–2598 (2009). https://doi.org/10.1007/s11095-009-9973-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9973-4

KEY WORDS

Navigation