Skip to main content
Log in

Multivariate Analysis of the Sequence Dependence of Asparagine Deamidation Rates in Peptides

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To develop a quantitative scheme to describe and predict asparagine deamidation in polypeptides using chemometric models employing reduced physicochemical property scales of amino acids.

Methods

Deamidation rates for 306 pentapeptides, Gly-(n−1)-Asn-(n+1)-Gly, with the residues n−1 and n+1 varying over the naturally occurring amino acids, were obtained from literature. A multivariate regression technique, called projection to latent structures (PLS), was used to establish mathematical relationships between the physicochemical properties and the deamidation half-lives of the amino acid sequences. Three reduced physicochemical property scales, amide hydrogen exchange rates (to describe the relative acidity of the amide protons) and flexibility parameters for the sequences were evaluated for their predictive capacity.

Results

The most effective descriptors of the deamidation half-lives were reduced-property parameters for amino acids called zz-scores. The PLS models with the reduced property scales, combined with the hydrogen exchange rates and/or flexibility parameters, explained more than 95% of the sequence-dependent variation in the deamidation half-lives. The amide hydrogen exchange rate (i.e., amide proton acidity), hydrophilicity, polarizability, and size of amino acids in position n+1 were found to be the principal factors governing the rate of deamidation. The effect of amino acids in position n−1 was found to be negligible.

Conclusions

Chemometric analysis employing reduced physicochemical parameters can provide an accurate prediction of chemical instability in peptides and proteins. The relative importance of these various factors could also be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

3loc:

Flexibility parameter of the n+1 residue

Asn:

Asparagine

HX:

Amide hydrogen exchange

ln(HX):

Natural logarithm of the n+1 residue amide proton half-lives

ln(t1/2):

Natural logarithm of the deamidation half-lives

PC:

Principle component

PCA:

Principle component analysis

PLS:

Projection to latent structures or partial least squares

RMSEP:

Root mean squared error of prediction

REFERENCES

  1. Manning MC, Patel K, Borchardt RT. Stability of protein pharmaceuticals. Pharm Res. 1989;6:903–18.

    Article  CAS  PubMed  Google Scholar 

  2. Aswad DW. Deamidation and Isoaspartate Formation in Peptides and Protein. In: Aswad D, editor. CRC series in analytical biotechnology. USA: CRC; 1995. p. 1–259.

    Google Scholar 

  3. Robinson AB, McKerrow JH, Cary P. Controlled deamidation of peptides and proteins: an experimental hazard and a possible biological timer. Proc Natl Acad Sci U S A. 1970;66:753–7.

    Article  CAS  PubMed  Google Scholar 

  4. Robinson NE, Robinson AB. Molecular clocks. Proc Natl Acad Sci U S A. 2001;98:944–9.

    Article  CAS  PubMed  Google Scholar 

  5. Wakankar AA, Borchardt RT. Formulation considerations for proteins susceptible to asparagine deamidation and aspartate isomerization. J Pharm Sci. 2006;95:2321–36.

    Article  CAS  PubMed  Google Scholar 

  6. Jenkins N. Modifications of therapeutic proteins: challenges and prospects. Cytotechnology. 2007;53(1–3):121–5.

    Article  CAS  PubMed  Google Scholar 

  7. Chelius D, Rehder DS, Bondarenko PV. Identification and characterization of deamidation sites in the conserved regions of human immunoglobulin gamma antibodies. Anal Chem. 2005;77:6004–11.

    Article  CAS  PubMed  Google Scholar 

  8. Ren D, Ratnaswamy G, Beierle J, Treuheit MJ, Brems DN, Bondarenko PV. Degradation products analysis of an Fc fusion protein using LC/MS methods. Int J Biol Macromol. 2009;44:81–5.

    Article  CAS  PubMed  Google Scholar 

  9. Li B, Borchardt RT, Topp EM, Vander Velde D, Schowen RL. Racemization of an asparagine residue during peptide deamidation. J Am Chem Soc. 2003;125:11486–7.

    Article  CAS  PubMed  Google Scholar 

  10. Peters B, Trout BL. Asparagine deamidation: pH-dependent mechanism from density functional theory. Biochemistry. 2006;45:5394–2.

    Article  Google Scholar 

  11. Wright HT. Sequence and structure determinants of the nonenzymatic deamidation of asparagine and glutamine residues in proteins. Protein Eng. 1991;4:283–94.

    Article  CAS  PubMed  Google Scholar 

  12. Stephenson RC, Clarke S. Succinimide formation from aspartyl and asparaginyl peptides as a model for the spontaneous degradation of proteins. J Biol Chem. 1989;26:6164–70.

    Google Scholar 

  13. Patel K, Borchardt RT. Chemical pathways of peptide degradation. III. Effect of primary sequence on the pathways of deamidation of asparaginyl residues in hexapeptides. Pharm Res. 1990;7:787–93.

    Article  CAS  PubMed  Google Scholar 

  14. Tyler-Cross R, Schirch V. Effects of amino acid sequence, buffers, and ionic strength on the rate and mechanism of deamidation of asparagine residues in small peptides. J Biol Chem. 1991;266:22549–56.

    CAS  PubMed  Google Scholar 

  15. Brennan TV, Clarke S. Effect of adjacent histidine and cysteine residues on the spontaneous degradation of asparaginyl- and aspartyl-containing peptides. Int J Pept Protein Res. 1995;45:547–53.

    CAS  PubMed  Google Scholar 

  16. Radkiewicz JL, Zipse H, Clarke S, Houk KN. Neighboring side chain effects on asparaginyl and aspartyl degradation: an ab initio study of the relationship between peptide conformation and backbone NH acidity. J Am Chem Soc. 2001;123:3499–506.

    Article  CAS  PubMed  Google Scholar 

  17. Clarke S. Propensity for spontaneous succinimide formation from aspartyl and asparaginyl residues in cellular proteins. Int J Pept Protein Res. 1987;30:808–21.

    CAS  PubMed  Google Scholar 

  18. Kosky AA, Razzaq UO, Treuheit MJ, Brems DN. The effects of alpha-helix on the stability of Asn residues: deamidation rates in peptides of varying helicity. Pro Sci. 1999;8:2519–23.

    Article  CAS  Google Scholar 

  19. Stevenson CL, Friedman AR, Kubik TM, Donlan ME, Borchardt RT. Effect of secondary structure on the rate of several growth hormone releasing factor analogs. Int J Pept Protein Res. 1993;42:497–503.

    CAS  PubMed  Google Scholar 

  20. Kossiakoff AA. Tertiary structure is a principal determinant to protein deamidation. Science. 1988;240:191–4.

    Article  CAS  PubMed  Google Scholar 

  21. Radkiewicz JL, Zipse H, Clarke S, Houk KN. Neighboring side chain effects on asparagine and aspartyl degradation: an ab initio study on the relationship between peptide conformation and peptide backbone NH acidity. J Am Chem Soc. 2001;123:3499–506.

    Article  CAS  PubMed  Google Scholar 

  22. Torrez M, Schultehenrich M, Livesay DR. Conferring thermostability to mesophilic proteins through optimized electrostatic surfaces. Biophys J. 2003;85:2845–53.

    Article  CAS  PubMed  Google Scholar 

  23. Dominy BN, Perl D, Schmid FX, Brooks CL. The effects of ionic strength on protein stability: the cold shock protein family. J Mol Biol. 2002;319:541–54.

    Article  CAS  PubMed  Google Scholar 

  24. Sanchez-Ruiz JM, Makhatadze GI. To charge or not to charge? Trends Biotechnol. 2001;19:132–5.

    Article  CAS  PubMed  Google Scholar 

  25. Wunderlich M, Martin A, Schmid FX. Stabilization of the cold shock proteins CspB from Bacillus subtilis by evolutionary optimization of coulombic interactions. J Mol Biol. 2005;347:1063–76.

    Article  CAS  PubMed  Google Scholar 

  26. Sandberg M, Eriksson L, Jonsson J, Sjostrom M, Wold S. New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids. J Med Chem. 1998;41:2481–91.

    Article  CAS  PubMed  Google Scholar 

  27. Hellberg S, Sjostrom M, Skagerberg B, Wold S. Peptide quantitative structure-activity relationships, a multivariate approach. J Med Chem. 1987;30:1126–35.

    Article  CAS  PubMed  Google Scholar 

  28. Cruciani G, Baroni M, Carosati E, Clementi M, Valigi R, Clementi S. Peptide studies by means of principle properties of amino acids derived from MIF descriptors. J Chemometrics. 2004;18:146–55.

    Article  CAS  Google Scholar 

  29. Robinson NE, Robinson AB, Merrifield RB. Mass spectrometric evaluation of synthetic peptides as primary structure models for peptide and protein deamidation. J Pept Res. 2001;57:483–93.

    Article  CAS  PubMed  Google Scholar 

  30. Robinson NE, Robinson AB. Prediction of primary structure deamidation rates of asparaginyl and glutaminyl peptides through steric and catalytic effects. J Pept Res. 2004;63:437–48.

    Article  CAS  PubMed  Google Scholar 

  31. Robinson NE, Robinson ZW, Robinson BR, Robinson AL, Robinson JA, Robinson ML, et al. Structure-dependent nonenzymatic deamidation of glutaminyl and asparaginyl pentapeptides. J Pept Res. 2004;63:426–36.

    Article  CAS  PubMed  Google Scholar 

  32. Palermo G, Piraino P, Zucht HD. Performance of PLS regression coefficients in selecting variables for each response of a multivariate PLS for omics-type data. Advances and Applications in Bioinformatics and Chemistry. 2009;2009(2):57–70.

    Google Scholar 

  33. Bai Y, Milne JS, Mayne L, Englander SW. Primary structure effects on peptide group hydrogen exchange. Proteins. 1993;17:75–86.

    Article  CAS  PubMed  Google Scholar 

  34. Smith DK, Radivojac P, Obradovic Z, Dunker AK, Zhu G. Improved amino acid flexibility parameters. Protein Sci. 2003;12:1060–72.

    Article  CAS  PubMed  Google Scholar 

  35. Katz MH. Multivariate analysis: a practice guide for clinicians. New York: Cambridge University Press; 1999. p. 158–62.

    Google Scholar 

  36. Stahle L, Wold S. Multivariate data analysis and experimental design in biomedical research. Prog Med Chem. 1988;25:291–338.

    Article  CAS  PubMed  Google Scholar 

  37. Wold S. PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst. 2001;58:109–30.

    Article  CAS  Google Scholar 

  38. Esbensen K-H. Multivariate data analysis—in practice: an introduction to multivariate data analysis and experimental design. 5th ed. USA: Camo Process; 2001.

    Google Scholar 

  39. Martens H, Martens M. Modified Jack-knife estimation of parameter uncertainty in bilinear modelling by partial least squares regression (PLSR). Food Qual Prefer. 2000;11:5–16.

    Article  Google Scholar 

  40. Lin TP, Hsu CC. Determination of residual moisture in lyophilized protein pharmaceuticals using a rapid and non-invasive method: near infrared spectroscopy. PDA J Pharm Sci Technol. 2002;56:196–205.

    PubMed  Google Scholar 

  41. Wakeling IN, Morris JJ. A test of significance for partial least squares regression, J. Chemometrics. 1993;7:291–304.

    Article  CAS  Google Scholar 

  42. Elshereef R, Budman H, Moresoli C, Legge RL. Fluorescence spectroscopy as a tool for monitoring solubility and aggregation behavior of β-lactoglobulin after heat treatment. Biotechnol Bioeng. 2006;95:863–74.

    Article  CAS  PubMed  Google Scholar 

  43. Verdu-Andres J, Massart DL, Menardo C, Sterna C. Correlation of non-linearities in spectroscopic multivariate calibration by using transformed original variables and PLS regression. Anal Chim Acta. 1997;349:271–82.

    Article  CAS  Google Scholar 

  44. Berglund A, Wold S. INLR, implicit non-linear latent variable regression. J Chemometrics. 1997;11:141–56.

    Article  CAS  Google Scholar 

  45. Baeza-Baeza JJ, Ramis-Ramos G. Reduction of the relative standard deviation in the least-squares fitting of limearized equations by using sensitivity weights. Anal Chim Acta. 1995;316:173–84.

    Article  CAS  Google Scholar 

  46. Spiegelman C, Wikander J, O’Neal P, Coté GL. A simple method for linearizing nonlinear spectra for calibration. Chemom Intell Lab Syst. 2002;60:197–209.

    Article  CAS  Google Scholar 

  47. Hadjuski L, Geladi P, Hopke P. A comparison of modeling nonlinear systems with artificial neural networks and partial least squares. Chemom Intell Lab Syst. 1999;49:91–103.

    Article  Google Scholar 

  48. Capasso S. Estimation of the deamidation rate of asparagine side chains. J Pept Res. 2000;55:224–9.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Amgen Incorporated for sponsoring this project and Art and Noah Robinson for permission to reproduce their table of deamidation half-times.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew A. Kosky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosky, A.A., Dharmavaram, V., Ratnaswamy, G. et al. Multivariate Analysis of the Sequence Dependence of Asparagine Deamidation Rates in Peptides. Pharm Res 26, 2417–2428 (2009). https://doi.org/10.1007/s11095-009-9953-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9953-8

KEY WORDS

Navigation