Skip to main content

Advertisement

Log in

Design of a Multifunctional PLGA Nanoparticulate Drug Delivery System: Evaluation of its Physicochemical Properties and Anticancer Activity to Malignant Cancer Cells

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Several individual approaches were combined to fabricate a novel nanoparticulate drug delivery system to achieve targeting and anticancer effects in various malignant cancer cells.

Methods

Doxorubicin was conjugated to Poly(lactic-co-glycolic acid) (PLGA), which was formulated into nanoparticle via solvent-diffusion method. The surface of the nanoparticles was subsequently linked with Poly(ethylene glycol) (PEG) and Arg-Gly-Asp (RGD) peptide to realize both passive and active targeting functions. The multifunctional nanoparticles were then tested against several malignant cancer cell lines.

Results

The conjugation increased loading efficiency of doxorubicin to PLGA nanoparticles (the encapsulation efficiency was over 85%) and alleviated the drug burst release effect substantially. The drug was released from the polymeric matrix in a sustained release manner over a period of 12 days. The resultant nanoparticles were spherically uniform and well-dispersed. The nanoparticle targeting ability was proven through strong affinity to various integrin-expressing cancer cells, and much less affinity to the low integrin expression cancer cells. The nanoparticles also showed high efficacy in inducing apoptosis in specific malignant cancer cell.

Conclusion

The developed multifunctional nanoparticles hold potential to treat malignant integrin-expressing cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. O. Hynes. Integrins: bidirectional, allosteric signaling machines. Cell. 110:673–687 (2002). doi:10.1016/S0092-8674(02)00971-6.

    Article  PubMed  CAS  Google Scholar 

  2. R. O. Hynes. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 69:11–25 (1992). doi:10.1016/0092-8674(92)90115-S.

    Article  PubMed  CAS  Google Scholar 

  3. R. M. Schiffelers, G. A. Koning, T. L. M. ten Hagen, M. Fens, A. J. Schraa, A. Janssen, R. J. Kok, G. Molema, and G. Storm. Anti-tumor efficacy of tumor vasculature-targeted liposomal doxorubicin. J Control Release. 91:115–122 (2003). doi:10.1016/S0168-3659(03)00240-2.

    Article  PubMed  CAS  Google Scholar 

  4. R. M. Schiffelers, A. Ansari, J. Xu, Q. Zhou, Q. Q. Tang, G. Storm, G. Molema, P. Y. Lu, P. V. Scaria, and M. C. Woodle. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res. 32:e149 (2004). doi:10.1093/nar/gnh140.

    Article  PubMed  Google Scholar 

  5. K. Temming, R. M. Schiffelers, G. Molema, and R. J. Kok. RGD-based strategies for selective delivery of therapeutics and imaging agents to the tumour vasculature. Drug Resist Updat. 8:381–402 (2005). doi:10.1016/j.drup.2005.10.002.

    Article  PubMed  CAS  Google Scholar 

  6. K. Temming, D. L. Meyer, R. Zabinski, E. C. Dijkers, K. Poelstra, G. Molema, and R. J. Kok. Evaluation of RGD-targeted albumin carriers for specific delivery of auristatin E to tumor blood vessels. Bioconjug Chem. 17:1385–1394 (2006). doi:10.1021/bc060087z.

    Article  PubMed  CAS  Google Scholar 

  7. P. M. Winter, S. D. Caruthers, A. Kassner, T. D. Harris, L. K. Chinen, J. S. Allen, E. K. Lacy, H. Zhang, J. D. Robertson, S. A. Wickline, and G. M. Lanza. Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel alpha(nu)beta3-targeted nanoparticle and 1.5 tesla magnetic resonance imaging. Cancer Res. 63:5838–5843 (2003).

    PubMed  CAS  Google Scholar 

  8. R. Langer. Drug delivery. Drugs on target. Science. 293:58–59 (2001). doi:10.1126/science.1063273.

    Article  PubMed  CAS  Google Scholar 

  9. M. E. Davis, Z. Chen, and D. M. Shin. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nature Reviews Drug Discovery. 7:771–782 (2008). doi:10.1038/nrd2614.

    Article  PubMed  CAS  Google Scholar 

  10. T. Lammers, W. E. Hennink, and G. Storm. Tumour-targeted nanomedicines: principles and practice. Br. J. Cancer. 99:392–397 (2008). doi:10.1038/sj.bjc.6604483.

    Article  PubMed  CAS  Google Scholar 

  11. K. J. Cho, X. Wang, S. M. Nie, Z. Chen, and D. M. Shin. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res. 14:1310–1316 (2008). doi:10.1158/1078-0432.CCR-07-1441.

    Article  PubMed  CAS  Google Scholar 

  12. S. Dandamudiand, and R. B. Campbell. The drug loading, cytotoxicty and tumor vascular targeting characteristics of magnetite in magnetic drug targeting. Biomaterials. 28:4673–83 (2007). doi:10.1016/j.biomaterials.2007.07.024.

    Article  Google Scholar 

  13. G. S. Papaetis, C. Roussos, and K. N. Syrigos. Targeted therapies for non-small cell lung cancer. Curr. Pharm. Des. 13:2810–2831 (2007). doi:10.2174/138161207781757079.

    Article  PubMed  CAS  Google Scholar 

  14. S. H. Kim, J. H. Jeong, K. W. Chun, and T. G. Park. Target-specific cellular uptake of PLGA nanoparticles coated with poly(L-lysine)-poly(ethylene glycol)-folate conjugate. Langmuir. 21:8852–8857 (2005). doi:10.1021/la0502084.

    Article  PubMed  CAS  Google Scholar 

  15. Y. Bae, N. Nishiyama, and K. Kataoka. In vivo antitumor activity of the folate-conjugated pH-sensitive polymeric micelle selectively releasing adriamycin in the intracellular acidic compartments. Bioconjug. Chem. 18:1131–1139 (2007). doi:10.1021/bc060401p.

    Article  PubMed  CAS  Google Scholar 

  16. D. Peer, J. M. Karp, S. Hong, O. C. FaroKhzad, R. Margalit, and R. Langer. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotech. 2:751–760 (2007). doi:10.1038/nnano.2007.387.

    Article  CAS  Google Scholar 

  17. H. S. Yoo, K. H. Lee, J. E. Oh, and T. G. Park. In vitro and in vivo anti-tumor activities of nanoparticles based on doxorubicin-PLGA conjugates. J. Control. Release. 68:419–31 (2000). doi:10.1016/S0168-3659(00)00280-7.

    Article  PubMed  CAS  Google Scholar 

  18. J. E. Oh, Y. S. Nam, K. H. Lee, and T. G. Park. Conjugation of drug to poly(D,L-lactic-co-glycolic acid) for controlled release from biodegradable microspheres. J. Control. Release. 57:269–280 (1999). doi:10.1016/S0168-3659(98)00123-0.

    Article  PubMed  CAS  Google Scholar 

  19. H. S. Yoo, J. E. Oh, K. H. Lee, and T. G. Park. Biodegradable nanoparticles containing doxorubicin-PLGA conjugate for sustained release. Pharm. Res. 16:1114–8 (1999). doi:10.1023/A:1018908421434.

    Article  PubMed  CAS  Google Scholar 

  20. N. Zhang, C. Chittasupho, C. Duangrat, T. J. Siahaan, and C. Berkland. PLGA nanoparticle–peptide conjugate effectively targets intercellular cell-adhesion molecule-1. Bioconjug. Chem. 19:145–152 (2008). doi:10.1021/bc700227z.

    Article  PubMed  CAS  Google Scholar 

  21. F. Chen, Y. Liu, J. Lu, K. J. Hwang, and V. H. Lee. A sensitive fluorometric assay for reducing sugars. Life Sci. 50:651–659 (1992). doi:10.1016/0024-3205(92)90450-4.

    Article  PubMed  CAS  Google Scholar 

  22. M. Herrmann, H. M. Lorenz, R. Voll, M. Grunke, W. Woith, and J. R. Kalden. A rapid and simple method for the isolation of apoptotic DNA fragments. Nucleic Acids Res. 22:5506–5507 (1994). doi:10.1093/nar/22.24.5506.

    Article  PubMed  CAS  Google Scholar 

  23. M. E. Keegan, S. M. Royce, T. Fahmy, and W. M. Saltzman. In vitro evaluation of biodegradable microspheres with surface-bound ligands. J. Control. Release. 110:574–580 (2006). doi:10.1016/j.jconrel.2005.11.004.

    Article  PubMed  CAS  Google Scholar 

  24. L. Vellon, J. A. Menendez, H. Liu, and R. Lupu. Up-regulation of alphavbeta3 integrin expression is a novel molecular response to chemotherapy-induced cell damage in a heregulin-dependent manner. Differentiation. 75:819–830 (2007). doi:10.1111/j.1432-0436.2007.00241.x.

    Article  PubMed  CAS  Google Scholar 

  25. O. H. Ramos, A. Kauskot, M. R. Cominetti, I. Bechyne, C. L. Salla Pontes, F. Chareyre, J. Manent, R. Vassy, M. Giovannini, C. Legrand, H. S. Selistre-de-Araujo, M. Crepin, and A. Bonnefoy. A novel alpha(v)beta (3)-blocking disintegrin containing the RGD motive, DisBa-01, inhibits bFGF-induced angiogenesis and melanoma metastasis. Clin. Exp. Metastasis. 25:53–64 (2008). doi:10.1007/s10585-007-9101-y.

    Article  PubMed  CAS  Google Scholar 

  26. B. R. Line, A. Mitra, A. Nan, and H. Ghandehari. Targeting tumor angiogenesis: Ccomparison of peptide and polymer-peptide conjugates. J. Nucl. Med. 46:1552–1560 (2005).

    PubMed  CAS  Google Scholar 

  27. R. S. Yang, C. H. Tang, W. J. Chuang, T. H. Huang, H. C. Peng, T. F. Huang, and W. M. Fu. Inhibition of tumor formation by snake venom disintegrin. Toxicon. 45:661–669 (2005). doi:10.1016/j.toxicon.2005.01.013.

    Article  PubMed  CAS  Google Scholar 

  28. W. Cai, D. W. Shin, K. Chen, O. Gheysens, Q. Cao, S. X. Wang, S. S. Gambhir, and X. Chen. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett. 6:669–676 (2006). doi:10.1021/nl052405t.

    Article  PubMed  CAS  Google Scholar 

  29. C. B. Pattillo, F. Sari-Sarraf, R. Nallamothu, B. M. Moore, G. C. Wood, and M. F. Kiani. Targeting of the antivascular drug combretastatin to irradiated tumors results in tumor growth delay. Pharm. Res. 22:1117–1120 (2005). doi:10.1007/s11095-005-5646-0.

    Article  PubMed  CAS  Google Scholar 

  30. W. Arap, R. Pasqualini, and E. Ruoslahti. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science. 279:377–380 (1998). doi:10.1126/science.279.5349.377.

    Article  PubMed  CAS  Google Scholar 

  31. E. A. Murphy, B. K. Majeti, L. A. Barnes, M. Makale, S. M. Weis, K. Lutu-Fuga, W. Wrasidlo, and D. A. Cheresh. Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis. Proc. Natl. Acad. Sci. U. S. A. 105:9343–9348 (2008). doi:10.1073/pnas.0803728105.

    Article  PubMed  CAS  Google Scholar 

  32. G. Minotti, P. Menna, E. Salvatorelli, G. Cairo, and L. Gianni. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol. Rev. 56:185–229 (2004). doi:10.1124/pr.56.2.6.

    Article  PubMed  CAS  Google Scholar 

  33. F. Meyer-Losic, J. Quinonero, V. Dubois, B. Alluis, M. Dechambre, M. Michel, F. Cailler, A. M. Fernandez, A. Trouet, and J. Kearsey. Improved therapeutic efficacy of doxorubicin through conjugation with a novel peptide drug delivery technology (Vectocell). J. Med. Chem. 49:6908–6916 (2006). doi:10.1021/jm0606591.

    Article  PubMed  CAS  Google Scholar 

  34. B. Rihovaand, and K. Kubackova. Clinical implications of N-(2-hydroxypropyl)methacrylamide copolymers. Current Pharmaceutical Biotechnology. 4:311–322 (2003). doi:10.2174/1389201033489711.

    Article  Google Scholar 

  35. T. Lammers, V. Subr, P. Peschke, P. Kuhnlein, W. E. Hennink, K. Ulbrich, F. Kiessling, M. Heilmann, J. Debus, P. E. Huber, and G. Storm. Image-guided and passively tumour-targeted polymeric nanomedicines for radiochemotherapy. Br. J. Cancer. 99:900–910 (2008). doi:10.1038/sj.bjc.6604561.

    Article  PubMed  CAS  Google Scholar 

  36. T. Lammers, P. Peschke, R. Kuehnlein, V. Subr, K. Ulbrich, P. Huber, W. Hennink, and G. Storm. Effect of intratumoral injection on the biodistribution and the therapeutic potential of HPMA copolymer-based drug delivery systems. Neoplasia. 8:788–795 (2006). doi:10.1593/neo.06436.

    Article  PubMed  CAS  Google Scholar 

  37. R. Duncan. Polymer conjugates as anticancer nanomedicines. Nat. Rev., Cancer. 6:688–701 (2006). doi:10.1038/nrc1958.

    Article  CAS  Google Scholar 

  38. P. A. Vasey, S. B. Kaye, R. Morrison, C. Twelves, P. Wilson, R. Duncan, A. H. Thomson, L. S. Murray, T. E. Hilditch, T. Murray, S. Burtles, D. Fraier, E. Frigerio, and J. Cassidy. Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents-drug-polymer conjugates. Cancer Research Campaign Phase I/II Committee. Clin. Cancer Res. 5:83–94 (1999).

    PubMed  CAS  Google Scholar 

  39. C. Deng, H. Y. Tian, P. B. Zhang, J. Sun, X. S. Chen, and X. B. Jing. Synthesis and characterization of RGD peptide grafted poly(ethylene glycol)-b-poly(L-lactide)-b-poly(L-glutamic acid) triblock copolymer. Biomacromolecules. 7:590–596 (2006). doi:10.1021/bm050678c.

    Article  PubMed  CAS  Google Scholar 

  40. O. C. Farokhzad, J. J. Cheng, B. A. Teply, I. Sherifi, S. Jon, P. W. Kantoff, J. P. Richie, and R. Langer. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl. Acad. Sci. U. S. A. 103:6315–6320 (2006). doi:10.1073/pnas.0601755103.

    Article  PubMed  CAS  Google Scholar 

  41. K. Avgoustakis. Pegylated poly(lactide) and poly(lactide-co-glycolide) nanoparticles: Preparation, properties and possible applications in drug delivery. Current Drug Delivery. 1:321–333 (2004). doi:10.2174/1567201043334605.

    Article  PubMed  CAS  Google Scholar 

  42. L. E. van Vlerken, T. K. Vyas, and M. M. Amiji. Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharm. Res. 24:1405–1414 (2007). doi:10.1007/s11095-007-9284-6.

    Article  PubMed  Google Scholar 

  43. S. M. Ryan, G. Mantovani, X. X. Wang, D. M. Haddleton, and D. J. Brayden. Advances in PEGylation of important biotech molecules: delivery aspects. Expert Opinion on Drug Delivery. 5:371–383 (2008). doi:10.1517/17425247.5.4.371.

    Article  PubMed  CAS  Google Scholar 

  44. S. Sengupta, D. Eavarone, I. Capila, G. Zhao, N. Watson, T. Kiziltepe, and R. Sasisekharan. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature. 436:568–572 (2005). doi:10.1038/nature03794.

    Article  PubMed  CAS  Google Scholar 

  45. S. Strieth, M. E. Eichhorn, A. Sutter, A. Jonczyk, A. Berghaus, and M. Dellian. Antiangiogenic combination tumor therapy blocking alpha(v)-integrins and VEGF-receptor-2 increases therapeutic effects in vivo. Int. J. Cancer. 119:423–431 (2006). doi:10.1002/ijc.21838.

    Article  PubMed  CAS  Google Scholar 

  46. M. Kim, J. Liao, M. L. Dowling, K. R. Voong, S. E. Parker, S. Wang, W. S. El-Deiry, and G. D. Kao. TRAIL inactivates the mitotic checkpoint and potentiates death induced by microtubule-targeting agents in human cancer cells. Cancer Res. 68:3440–3449 (2008). doi:10.1158/0008-5472.CAN-08-0014.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by Academic Research Funding, grant number R148-000-097-112. Z. Wang is grateful to National University of Singapore for the financial support to his graduate studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul C. Ho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Chui, WK. & Ho, P.C. Design of a Multifunctional PLGA Nanoparticulate Drug Delivery System: Evaluation of its Physicochemical Properties and Anticancer Activity to Malignant Cancer Cells. Pharm Res 26, 1162–1171 (2009). https://doi.org/10.1007/s11095-009-9837-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9837-y

KEY WORDS

Navigation