Skip to main content

Advertisement

Log in

Enhanced Core Hydrophobicity, Functionalization and Cell Penetration of Polybasic Nanomatrices

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

In this work a novel pH-responsive nanoscale polymer network was investigated for potential applications in nanomedicine. These consisted of a polybasic core surface stabilized with poly(ethylene glycol) grafts. The ability to control swelling properties via changes in core hydrophobicity and crosslinking feed density was assessed. The nanomatrices were also evaluated in vitro as nanocarriers for targeted intracellular delivery of macromolecules.

Materials and Methods

Photo-emulsion polymerization was used to synthesize poly[2-(diethylamino)ethyl methacrylate-co-t-butyl methacrylate-g-poly(ethylene glycol)] (PDBP) nanomatrices. These were characterized using NMR, dynamic and electrophoretic light scattering, electron microscopy. The cytocompatibility and cellular uptake of nanomatrices was measured using the NIH/3T3 and A549 cell lines.

Results

PDBP nanomatrices had a dry diameter of 40–60 nm and a hydrodynamic diameter of 70–90 nm in the collapsed state. Maximum volume swelling ratios from 6–22 were obtained depending on crosslinking feed density. Controlling the hydrophobicity of the networks allowed for control over the critical swelling pH without a significant loss in maximal volume swelling. The effect of PDBP nanomatrices on cell viability and cell membrane integrity depended on crosslinking feed density. Cell uptake and cytosolic delivery of FITC-albumin was enhanced from clathrin-targeting nanocarriers. The uptake resulted in nuclear localization of the dye in a cell type dependent fashion.

Conclusions

The results of this work indicate that PDBP nanomatrices have tunable swelling properties. The networks were cytocompatible and proved to be suitable agents for intracellular delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AEM:

2-aminoethyl methacrylate hydrochloride

BFA:

brefeldin A

BMA:

tert-butyl methacrylate

DEAEM:

2-(diethylamino)ethyl methacrylate)

DLS:

dynamic light scattering

FITC:

fluorescein isothiocyanate

HPLC:

high performance liquid chromatography

LDH:

lactate dehydrogenase

MyTAB:

myristyltrimethylammonium bromide

PDBP:

poly[2-(diethylamino)ethyl methacrylate-co-t-butyl methacrylate-g-poly(ethylene glycol)]

PDEAEM:

poly[2-(diethylamino)ethyl methacrylate]

PDGP:

poly[2-(diethylamino)ethyl methacrylate-g-poly(ethylene glycol)]

PEGMMA:

poly(ethylene glycol) monomethyl ether monomethacrylate

RGDS:

arginine-glycine-aspartate-serine

TEGDMA:

Tetraethylene glycol dimethacrylate

Tf:

holo-transferrin

References

  1. J. K. Oh, R. Drumright, D. J. Siegwart, and K. Matyjaszewski. The development of microgels/nanogels for drug delivery applications. Prog. Polym. Sci. 33:448–477 (2008) doi:10.1016/j.progpolymsci.2008.01.002.

    Article  CAS  Google Scholar 

  2. M. Oishi, H. Hayashi, K. Itaka, K. Kataoka, and Y. Nagasaki. pH-responsive PEGylated nanogels as targetable and low invasive endosomolytic agents to induce the enhanced transfection efficiency of nonviral gene vectors. Colloid Polymer Sci. 285:1055–1060 (2007) doi:10.1007/s00396-007-1660-6.

    Article  CAS  Google Scholar 

  3. H. Hayashi, M. Iijima, K. Kataoka, and Y. Nagasaki. pH-sensitive nanogel possessing reactive PEG tethered chains on the surface. Macromolecules. 37:5389–5396 (2004) doi:10.1021/ma049199g.

    Article  CAS  Google Scholar 

  4. M. Lee, and S. W. Kim. Polyethylene glycol-conjugated copolymers for plasmid DNA delivery. Pharm. Res. 22:1–10 (2005) doi:10.1007/s11095-004-9003-5.

    Article  PubMed  CAS  Google Scholar 

  5. H. Petersen, P. M. Fechner, A. L. Martin, K. Kunath, S. Stolnik, C. J. Roberts, D. Fischer, M. C. Davies, and T. Kissel. Polyethylenimine-graft-poly(ethylene glycol) copolymers: influence of copolymer block structure on DNA complexation and biological activities as gene delivery system. Bioconjug. Chem. 13:845–854 (2002) doi:10.1021/bc025529v.

    Article  PubMed  CAS  Google Scholar 

  6. R. A. Siegel, and J. M. Cornejo-Bravo. Hydrophobic polyelectrolytes—effect of hydrophobicity on buffering and colloid osmotic-pressure. ACS Symp. Ser. 480:131–145 (1992).

    CAS  Google Scholar 

  7. D. G. Duff, A. Baiker, and P. P. Edwards. A new hydrosol of gold clusters. 1. Formation and particle-size variation. Langmuir. 9:2301–2309 (1993) doi:10.1021/la00033a010.

    Article  CAS  Google Scholar 

  8. J. M. Cornejo-Bravo, and R. A. Siegel. Water vapour sorption behaviour of copolymers of N,N-diethylaminoethyl methacrylate and methyl methacrylate. Biomaterials. 17:1187–1193 (1996) doi:10.1016/0142-9612(96)84939-8.

    Article  PubMed  CAS  Google Scholar 

  9. A. Kishida, H. Iwata, Y. Tamada, and Y. Ikada. Cell behaviour on polymer surfaces grafted with non-ionic and ionic monomers. Biomaterials. 12:786–792 (1991) doi:10.1016/0142-9612(91)90031-5.

    Article  PubMed  CAS  Google Scholar 

  10. A. Ziegler, P. Nervi, M. Durrenberger, and J. Seelig. The cationic cell-penetrating peptide CPP(TAT) derived from the HIV-1 protein TAT is rapidly transported into living fibroblasts: optical, biophysical, and metabolic evidence. Biochemistry. 44:138–148 (2005) doi:10.1021/bi0491604.

    Article  PubMed  CAS  Google Scholar 

  11. O. Boussif, F. Lezoualch, M. A. Zanta, M. D. Mergny, D. Scherman, B. Demeneix, and J. P. Behr. A versatile vector for gene and oligonucleotide transfer into cells in culture and in-vivo—polyethylenimine. Proc. Natl. Acad. Sci. U.S.A. 92:7297–7301 (1995) doi:10.1073/pnas.92.16.7297.

    Article  PubMed  CAS  Google Scholar 

  12. J. P. Behr. The proton sponge: A trick to enter cells the viruses did not exploit. Chimia. 51:34–36 (1997).

    CAS  Google Scholar 

  13. A. Ziegler, and J. Seelig. Binding and clustering of glycosaminoglycans: a common property of mono- and multivalent cell-penetrating compounds. Biophys. J. 94:2142–2149 (2008) doi:10.1529/biophysj.107.113472.

    Article  PubMed  CAS  Google Scholar 

  14. E. Moreau, M. Domurado, P. Chapon, M. Vert, and D. Domurado. Biocompatibility of polycations: In vitro agglutination and lysis of red blood cells and in vivo toxicity. J. Drug Target. 10:161–173 (2002) doi:10.1080/10611860290016766.

    Article  PubMed  CAS  Google Scholar 

  15. K. von Gersdorff, N. N. Sanders, R. Vandenbroucke, S. C. De Smedt, E. Wagner, and M. Ogris. The internalization route resulting in successful gene expression depends on polyethylenimine both cell line and polyplex type. Mol. Ther. 14:745–753 (2006) doi:10.1016/j.ymthe.2006.07.006.

    Article  CAS  Google Scholar 

  16. K. A. Howard, U. L. Rahbek, X. D. Liu, C. K. Damgaard, S. Z. Glud, M. O. Andersen, M. B. Hovgaard, A. Schmitz, J. R. Nyengaard, F. Besenbacher, and J. Kjems. RNA interference in vitro and in vivo using a chitosan/siRNA nanoparticle system. Mol. Ther. 14:476–484 (2006) doi:10.1016/j.ymthe.2006.04.010.

    Article  PubMed  CAS  Google Scholar 

  17. P. Erbacher, T. Bettinger, P. Belguise-Valladier, S. M. Zou, J. L. Coll, J. P. Behr, and J. S. Remy. Transfection and physical properties of various saccharide, poly(ethylene glycol), and antibody-derivatized polyethylenimines (PEI). J. Gene Med. 1:210–222 (1999) doi:10.1002/(SICI)1521-2254(199905/06)1:3<210::AID-JGM30>3.0.CO;2-U.

    Article  PubMed  CAS  Google Scholar 

  18. J. A. Wolffand, and D. B. Rozema. Breaking the bonds: non-viral vectors become chemically dynamic. Mol. Ther. 16:8–15 (2008) doi:10.1038/sj.mt.6300326.

    Article  CAS  Google Scholar 

  19. S. C. De Smedt, J. Demeester, and W. E. Hennink. Cationic polymer based gene delivery systems. Pharm. Res. 17:113–126 (2000) doi:10.1023/A:1007548826495.

    Article  PubMed  Google Scholar 

  20. N. Nishiyama, A. Iriyama, W. D. Jang, K. Miyata, K. Itaka, Y. Inoue, H. Takahashi, Y. Yanagi, Y. Tamaki, H. Koyama, and K. Kataoka. Light-induced gene transfer from packaged DNA enveloped in a dendrimeric photosensitizer. Nat. Mater. 4:934–941 (2005) doi:10.1038/nmat1524.

    Article  PubMed  CAS  Google Scholar 

  21. J. M. Geurts, C. M. Gottgens, M. A. I. Van Graefschepe, R. W. A. Welland, J. J. G. Van Es, and A. L. German. Syntheses of new amino-functionalized methacrylates and their use in free radical polymerizations. J. Appl. Polym. Sci. 80:1401–1415 (2001) doi:10.1002/app.1230.

    Article  CAS  Google Scholar 

  22. M. Amyere, M. Mettlen, P. Van Der Smissen, A. Platek, B. Payrastre, A. Veithen, and P. J. Courtoy. Origin, originality, functions, subversions and molecular signalling of macropinocytosis. Int. J. Med. Microbiol. 291:487–494 (2002) doi:10.1078/1438-4221-00157.

    Article  PubMed  CAS  Google Scholar 

  23. S. Grosse, Y. Aron, G. Thevenot, D. Francois, M. Monsigny, and I. Fajac. Potocytosis and cellular exit of complexes as cellular pathways for gene delivery by polycations. J. Gene Med. 7:1275–1286 (2005) doi:10.1002/jgm.772.

    Article  PubMed  CAS  Google Scholar 

  24. S. Corr, C. Hill, and C. G. Gahan. An in vitro cell-culture model demonstrates internalin- and hemolysin-independent translocation of Listeria monocytogenes across M cells. Microb. Pathog. 41:241–250 (2006).

    Article  PubMed  CAS  Google Scholar 

  25. M. A. West, M. S. Bretscher, and C. Watts. Distinct endocytotic pathways in epidermal growth factor-stimulated human carcinoma A431 cells. J. Cell Biol. 109:2731–2739 (1989) doi:10.1083/jcb.109.6.2731.

    Article  PubMed  CAS  Google Scholar 

  26. L. Pelkmans, and A. Helenius. Endocytosis via caveolae. Traffic. 3:311–320 (2002) doi:10.1034/j.1600-0854.2002.30501.x.

    Article  PubMed  CAS  Google Scholar 

  27. K. Miller, M. Shipman, I. S. Trowbridge, and C. R. Hopkins. Transferrin receptors promote the formation of clathrin lattices. Cell. 65:621–632 (1991) doi:10.1016/0092-8674(91)90094-F.

    Article  PubMed  CAS  Google Scholar 

  28. S. V. Vinogradov. Colloidal microgels in drug delivery applications. Curr. Pharm. Des. 12:4703–4712 (2006) doi:10.2174/138161206779026254.

    Article  PubMed  CAS  Google Scholar 

  29. S. V. Vinogradov, E. V. Batrakova, and A. V. Kabanov. Nanogels for oligonucleotide delivery to the brain. Bioconjug. Chem. 15:50–60 (2004) doi:10.1021/bc034164r.

    Article  PubMed  CAS  Google Scholar 

  30. M. Ogris, S. Brunner, S. Schuller, R. Kircheis, and E. Wagner. PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther. 6:595–605 (1999) doi:10.1038/sj.gt.3300900.

    Article  PubMed  CAS  Google Scholar 

  31. J. Wan, M. E. Taub, D. Shah, and W. C. Shen. Brefeldin A enhances receptor-mediated transcytosis of transferrin in filter-grown Madin-Darby canine kidney cells. J. Biol. Chem. 267:13446–13450 (1992).

    PubMed  CAS  Google Scholar 

  32. C. J. Lim, and W. C. Shen. Comparison of monomeric and oligomeric transferrin as potential carrier in oral delivery of protein drugs. J. Control. Release. 106:273–286 (2005) doi:10.1016/j.jconrel.2005.05.001.

    Article  PubMed  CAS  Google Scholar 

  33. L. C. Trotman, N. Mosberger, M. Fornerod, R. P. Stidwill, and U. F. Greber. Import of adenovirus DNA involves the nuclear pore complex receptor CAN/Nup214 and histone H1. Nat. Cell Biol. 3:1092–1100 (2001) doi:10.1038/ncb1201-1092.

    Article  PubMed  CAS  Google Scholar 

  34. B. Talcott, and M. S. Moore. Getting across the nuclear pore complex. Trends Cell. Biol. 9:312–318 (1999) doi:10.1016/S0962-8924(99)01608-6.

    Article  PubMed  CAS  Google Scholar 

  35. D. Lechardeur, and G. L. Lukacs. Intracellular barriers to non-viral gene transfer. Curr. Gene Ther. 2:183–194 (2002) doi:10.2174/1566523024605609.

    Article  PubMed  CAS  Google Scholar 

  36. R. Wang, and M. G. Brattain. The maximal size of protein to diffuse through the nuclear pore is larger than 60 kDa. FEBS Lett. 581:3164–3170 (2007) doi:10.1016/j.febslet.2007.05.082.

    Article  PubMed  CAS  Google Scholar 

  37. P. L. Paine, and C. M. Feldherr. Nucleocytoplasmic exchange of Macromolecules. Exp. Cell Res. 74:81–98 (1972) doi:10.1016/0014-4827(72)90483-1.

    Article  PubMed  CAS  Google Scholar 

  38. P. L. Paine. Nucleocytoplasmic movement of fluorescent tracers microinjected into living salivary gland cells. J. Cell Biol. 66:652–657 (1975) doi:10.1083/jcb.66.3.652.

    Article  PubMed  CAS  Google Scholar 

  39. A. E. Smithand, and A. Helenius. How viruses enter animal cells. Science. 304:237–242 (2004) doi:10.1126/science.1094823.

    Article  CAS  Google Scholar 

  40. D. M. Shayakhmetov, A. M. Eberly, Z. Y. Li, and A. Lieber. Deletion of penton RGD motifs affects the efficiency of both the internalization and the endosome escape of viral particles containing adenovirus serotype 5 or 35 fiber knobs. J. Virol. 79:1053–1061 (2005) doi:10.1128/JVI.79.2.1053-1061.2005.

    Article  PubMed  CAS  Google Scholar 

  41. E. M. van Damand, and W. Stoorvogel. Dynamin-dependent transferrin receptor recycling by endosome-derived clathrin-coated vesicles. Mol. Biol. Cell. 13:169–182 (2002) doi:10.1091/mbc.01-07-0380.

    Article  CAS  Google Scholar 

  42. M. Goldberg, R. Langer, and X. Jia. Nanostructured materials for applications in drug delivery and tissue engineering. J. Biomater. Sci., Polym. Ed. 18:241–268 (2007) doi:10.1163/156856207779996931.

    Article  CAS  Google Scholar 

  43. S. M. Moghimi, A. C. Hunter, and J. C. Murray. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev. 53:283–318 (2001).

    PubMed  CAS  Google Scholar 

  44. V. A. Sethuraman, M. C. Lee, and Y. H. Bae. A biodegradable pH-sensitive micelle system for targeting acidic solid tumors. Pharm. Res. 25:657–666 (2008) doi:10.1007/s11095-007-9480-4.

    Article  PubMed  CAS  Google Scholar 

  45. D. Shenoy, S. Little, R. Langer, and M. Amiji. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: Part 2. In vivo distribution and tumor localization studies. Pharm. Res. 22:2107–2114 (2005) doi:10.1007/s11095-005-8343-0.

    Article  PubMed  CAS  Google Scholar 

  46. S. Ganta, H. Devalapally, A. Shahiwala, and M. Amiji. A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release. 126:187–204 (2008) doi:10.1016/j.jconrel.2007.12.017.

    Article  PubMed  CAS  Google Scholar 

  47. H. Devalapally, D. Shenoy, S. Little, R. Langer, and M. Amiji. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: part 3. Therapeutic efficacy and safety studies in ovarian cancer xenograft model. Cancer Chemother. Pharmacol. 59:477–484 (2007) doi:10.1007/s00280-006-0287-5.

    Article  PubMed  CAS  Google Scholar 

  48. A. Potineni, D. M. Lynn, R. Langer, and M. M. Amiji. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive biodegradable system for paclitaxel delivery. J. Control. Release. 86:223–234 (2003) doi:10.1016/S0168-3659(02)00374-7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge support from the National Institutes of Health, grant number EG-000246, a National Science Foundation Integrative Graduate Education and Research Traineeship (IGERT) Fellowship (to O.Z.F.), DGE-03-33080, and the University of Texas at Austin Undergraduate Research Fellowships to T.K. and S.R.D. The authors would also like to acknowledge the assistance of the University of Texas at Austin Institute for Cellular and Molecular Biology, the Texas Materials Institute and Professor Lisa Brannon-Peppas, Ph.D. for the use of their facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas A. Peppas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fisher, O.Z., Kim, T., Dietz, S.R. et al. Enhanced Core Hydrophobicity, Functionalization and Cell Penetration of Polybasic Nanomatrices. Pharm Res 26, 51–60 (2009). https://doi.org/10.1007/s11095-008-9704-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9704-2

KEY WORDS

Navigation